3._矩阵的加减与数乘

矩阵的加法

定义A=(aij)m×nA=\left(a_{i j}\right)_{m \times n}B=(bij)m×nB=\left(b_{i j}\right)_{m \times n} 是两个同型矩阵,则矩阵 AABB 的和记为 A+BA+B ,规定:

A+B=(a11+b11a12+b12a1n+b1na21+b21a22+b22a2n+b2nam1+bm1am2+bm2amn+bmn).\boldsymbol{A}+\boldsymbol{B}=\left(\begin{array}{cccc} a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n} \end{array}\right) .

矩阵的加法满足如下的运算规律: 设 A,B,CA, B, C 是任意三个 m×nm \times n 矩阵,则 1 交换律: A+B=B+A\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A} ; 2 结合律: (A+B)+C=A+(B+C)(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}=\boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C}) ; 3 A+Om×n=Om×n+A=A\boldsymbol{A}+\boldsymbol{O}_{m \times n}=\boldsymbol{O}_{m \times n}+\boldsymbol{A}=\boldsymbol{A}.

矩阵的减法

对于矩阵 A=(aij)m×nA=\left(a_{i j}\right)_{m \times n} ,称矩阵 (aij)m×n\left(-a_{i j}\right)_{m \times n} 为矩阵 AA 的负矩阵,记为 A-\boldsymbol{A}. 显然, A+(A)=Om×nA+(-A)=O_{m \times n}. 定义矩阵 A=(aij)m×n\boldsymbol{A}=\left(a_{i j}\right)_{m \times n}B=(bij)m×n\boldsymbol{B}=\left(b_{i j}\right)_{m \times n} 的减法为:

AB=A+(B)=(aijbij)m×n.\boldsymbol{A}-\boldsymbol{B}=\boldsymbol{A}+(-\boldsymbol{B})=\left(a_{i j}-b_{i j}\right)_{m \times n} .

矩阵的加减就是对应数字的加减。

矩阵的数乘

定义 用一个数 kk 乘矩阵 A=(aij)m×n\boldsymbol{A}=\left(a_{i j}\right)_{m \times n} 的所有元素得到的矩阵 (kaij)m×n\left(k a_{i j}\right)_{m \times n} 称为矩阵的数乘,记为 kAk \boldsymbol{A} 或者 Ak\boldsymbol{A} k , 即 kA=Ak=(kaij)m×nk \boldsymbol{A}=\boldsymbol{A} k=\left(k a_{i j}\right)_{m \times n}.

上述定义告诉我们: 矩阵乘以一个数等于矩阵里所有元素都乘以这个数。例如

2×(2143)=(4286)\begin{aligned} & 2 \times\left(\begin{array}{ll} 2 & 1 \\ 4 & 3 \end{array}\right)=\left(\begin{array}{ll} 4 & 2 \\ 8 & 6 \end{array}\right) \end{aligned}

请把矩阵数乘和行列式的数乘区分出来,行列式乘以一个k,等于行列式里的一行乘以k。而矩阵乘以一个k等于矩阵里每行乘以k

矩阵的数乘运算满足如下的运算规律:设 k,lk, l 是任意两个数, A,BA, B 是任意两个 m×nm \times n 矩阵,

1.k(A+B)=kA+kB1. k(\boldsymbol{A}+\boldsymbol{B})=k \boldsymbol{A}+k \boldsymbol{B} 2.(k+l)A=kA+lA2. (k+l) \boldsymbol{A}=k \boldsymbol{A}+l \boldsymbol{A} 3.(kl)A=k(lA)=l(kA)3. (k l) \boldsymbol{A}=k(l \boldsymbol{A})=l(k \boldsymbol{A}) 4.1A=A4. 1 \boldsymbol{A}=\boldsymbol{A} 5.(1)A=A5. (-1) \boldsymbol{A}=-\boldsymbol{A} 6.0A=On×n6. 0 \boldsymbol{A}=\boldsymbol{O}_{n \times n} 矩阵的加法和矩阵的数乘统称为矩阵的线性运算.

矩阵的加减法就是对应数字相加减,例如

(2143)+(1210)=(3353)\begin{aligned} &\left(\begin{array}{ll} 2 & 1 \\ 4 & 3 \end{array}\right)+\left(\begin{array}{ll} 1 & 2 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{ll} 3 & 3 \\ 5 & 3 \end{array}\right) \end{aligned}

A=(302134),B=(121023)\boldsymbol{A}=\left(\begin{array}{lll}3 & 0 & 2 \\ 1 & 3 & 4\end{array}\right), \boldsymbol{B}=\left(\begin{array}{ccc}-1 & 2 & 1 \\ 0 & 2 & 3\end{array}\right) ,求 A+B\boldsymbol{A}+\boldsymbol{B}2AB2 \boldsymbol{A}-\boldsymbol{B}.

解:

A+B=(302134)+(121023)=(310+22+11+03+24+3)=(223157);2AB=2(302134)(121023)=(3×20×22×21×23×24×2)(121023)=(6+10241206283)=(723245).\begin{aligned} & \boldsymbol{A}+\boldsymbol{B}=\left(\begin{array}{lll} 3 & 0 & 2 \\ 1 & 3 & 4 \end{array}\right)+\left(\begin{array}{ccc} -1 & 2 & 1 \\ 0 & 2 & 3 \end{array}\right)=\left(\begin{array}{ccc} 3-1 & 0+2 & 2+1 \\ 1+0 & 3+2 & 4+3 \end{array}\right)=\left(\begin{array}{ccc} 2 & 2 & 3 \\ 1 & 5 & 7 \end{array}\right) ; \\ & 2 \boldsymbol{A}-\boldsymbol{B}=2\left(\begin{array}{lll} 3 & 0 & 2 \\ 1 & 3 & 4 \end{array}\right)-\left(\begin{array}{ccc} -1 & 2 & 1 \\ 0 & 2 & 3 \end{array}\right)=\left(\begin{array}{ccc} 3 \times 2 & 0 \times 2 & 2 \times 2 \\ 1 \times 2 & 3 \times 2 & 4 \times 2 \end{array}\right)-\left(\begin{array}{ccc} -1 & 2 & 1 \\ 0 & 2 & 3 \end{array}\right) \\ & =\left(\begin{array}{ccc} 6+1 & 0-2 & 4-1 \\ 2-0 & 6-2 & 8-3 \end{array}\right)=\left(\begin{array}{ccc} 7 & -2 & 3 \\ 2 & 4 & 5 \end{array}\right) . \\ & \end{aligned}