Next ForgeOpenTech
书籍

目录

  • 00_Overview_of_this_Book
  • 01_Basic_Concepts
  • 02_State_Values_and_Bellman_Equation
  • 03_Optimal_State_Values_and_Bellman_Optimality_Equation
  • 04_Value_Iteration_and_Policy_Iteration
  • 05_Monte_Carlo_Methods
  • 06_Stochastic_Approximation
  • 07_Temporal-Difference_Methods
  • 08_Value_Function_Methods
  • 09_Policy_Gradient_Methods
  • 10_Actor-Critic_Methods
  • 11_A_Preliminaries_for_Probability_Theory
  • 12_B_Measure-Theoretic_Probability_Theory
  • 13_C_Convergence_of_Sequences
  • 14_D_Preliminaries_for_Gradient_Descent
  • 15_Bibliography
  • 16_Symbols
  • 17_Index

README

Convergence of Sequences

We next introduce some results about the convergence of deterministic and stochastic sequences. These results are useful for analyzing the convergence of reinforcement learning algorithms such as those in Chapters 6 and 7.

We first consider deterministic sequences and then stochastic sequences.

上一章13_C_Convergence_of_Sequences
下一章C.1_Convergence_of_deterministic_sequences

OpenTech

AI驱动的阅读与学习平台

Built withLogoNexty.dev

Languages

  • English
  • Chinese
  • Japanese

Open Source

  • Next Forge
  • Landing Page Boilerplate
  • Blog Boilerplate

Other Products

  • Nexty - SaaS Template
  • OG Image Generator
  • Dofollow.Tools

Subscribe to our newsletter

Get the latest news and updates from Next Forge

Copyright © 2025 Next Forge All rights reserved.

Privacy PolicyTerms of Service
Featured on Dofollow.Tools