0.10 基的变换 设 V V V 是域 F \mathbf{F} F 上的 n n n 维向量空间, B 1 = { v 1 , v 2 , … , v n } \mathcal{B}_1 = \{v_1, v_2, \dots, v_n\} B 1 = { v 1 , v 2 , … , v n } 是 V V V 的一个基。如果 x ∈ V x \in V x ∈ V 是任一给定的向量,因为集合 B 1 \mathcal{B}_1 B 1 张成 V V V ,则 x x x 有某个表示式 x = α 1 v 1 + α 2 v 2 + ⋯ + α n v n x = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n x = α 1 v 1 + α 2 v 2 + ⋯ + α n v n 。如果在同一个基下存在另一个表达式 x = β 1 v 1 + β 2 v 2 + ⋯ + β n v n x = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n x = β 1 v 1 + β 2 v 2 + ⋯ + β n v n ,那么,
0 = x − x = ( α 1 − β 1 ) v 1 + ( α 2 − β 2 ) v 2 + ⋯ + ( α n − β n ) v n 0 = x - x = \left(\alpha_ {1} - \beta_ {1}\right) v _ {1} + \left(\alpha_ {2} - \beta_ {2}\right) v _ {2} + \dots + \left(\alpha_ {n} - \beta_ {n}\right) v _ {n} 0 = x − x = ( α 1 − β 1 ) v 1 + ( α 2 − β 2 ) v 2 + ⋯ + ( α n − β n ) v n 由基 β 1 \beta_{1} β 1 无关可知所有 α i − β i = 0 \alpha_{i} - \beta_{i} = 0 α i − β i = 0 ,给定基 β 1 \beta_{1} β 1 ,从 V V V 到 F n \mathbf{F}^{n} F n 的线性映射
x → [ x ] s 1 ≡ [ α 1 α 2 ⋮ α n ] , 其 中 x − α 1 v 1 + α 2 v 2 + ⋯ + α n v n x \rightarrow [ x ] _ {s _ {1}} \equiv \left[\begin{array}{c}{\alpha_ {1}}\\{\alpha_ {2}}\\{\vdots}\\{\alpha_ {n}}\end{array}\right], \quad \text {其 中} x - \alpha_ {1} v _ {1} + \alpha_ {2} v _ {2} + \dots + \alpha_ {n} v _ {n} x → [ x ] s 1 ≡ α 1 α 2 ⋮ α n , 其 中 x − α 1 v 1 + α 2 v 2 + ⋯ + α n v n 是意义明确的、一对一的和到上的。纯量 α i \alpha_{i} α i 称为 x x x 关于基 B 1 \mathcal{B}_1 B 1 的坐标,而列向量 [ x ] α i [x]_{\alpha_i} [ x ] α i 是 x x x 的唯一坐标表示。
设 T : V → V T: V \to V T : V → V 是给定的线性变换。只要知道 n n n 个向量 T v 1 , T v 2 , ⋯ , T v n Tv_{1}, Tv_{2}, \cdots, Tv_{n} T v 1 , T v 2 , ⋯ , T v n , T T T 对任一 r ∈ V r \in V r ∈ V 的作用就被确定了;这是因为任一 x ∈ V x \in V x ∈ V 有唯一表示 x = α 1 v 1 + ⋯ + α n v n x = \alpha_{1}v_{1} + \cdots + \alpha_{n}v_{n} x = α 1 v 1 + ⋯ + α n v n ,且由线性性质可知, T x = T ( α 1 v 1 + ⋯ + α n v n ) = T ( α 1 v 1 ) + ⋯ + T ( α n v n ) = α 1 T x + ⋯ + α n T v Tx = T(\alpha_{1}v_{1} + \cdots + \alpha_{n}v_{n}) = T(\alpha_{1}v_{1}) + \cdots + T(\alpha_{n}v_{n}) = \alpha_{1}Tx + \cdots + \alpha_{n}Tv T x = T ( α 1 v 1 + ⋯ + α n v n ) = T ( α 1 v 1 ) + ⋯ + T ( α n v n ) = α 1 T x + ⋯ + α n T v 。因此,一旦知道 [ x ] α 1 [x]_{\alpha_{1}} [ x ] α 1 ,就可以确定 T x Tx T x 的值。
设 B 2 = { w 1 , w 2 , … , w n } \mathcal{B}_2 = \{w_1, w_2, \dots, w_n\} B 2 = { w 1 , w 2 , … , w n } 是 V V V 的另一个基,可能与 B 1 \mathcal{B}_1 B 1 不同,并且假定 T v j T v_j T v j 的 B 2 \mathcal{B}_2 B 2 坐标表示是
[ T v j ] λ 2 = [ t 1 , t 2 , ⋮ t n j ] , j = 1 , 2 , … , n . \left[ T v _ {j} \right] _ {\lambda_ {2}} = \left[ \begin{array}{l} t _ {1}, \\ t _ {2}, \\ \vdots \\ t _ {n j} \end{array} \right], \quad j = 1, 2, \dots , n. [ T v j ] λ 2 = t 1 , t 2 , ⋮ t nj , j = 1 , 2 , … , n . 那么,对任 ⋯ ∈ V \dots \in V ⋯ ∈ V ,有
[ T r ] a ^ 2 = [ ∑ j = 1 n α j T v j ] a ^ 2 = ∑ j = 1 n α j [ T v j ] a ^ 2 = ∑ j = 1 n α j [ t 1 j t 2 j ⋮ t m j ] = ∣ t ˉ 11 … t 1 n ⋮ ⋱ ⋮ t n 1 … t n n ∣ ∣ α 1 ⋮ α n ∣ . \begin{array}{l} \left[ T r \right] _ {\hat {a} _ {2}} = \left[ \sum_ {j = 1} ^ {n} \alpha_ {j} T v _ {j} \right] _ {\hat {a} _ {2}} = \sum_ {j = 1} ^ {n} \alpha_ {j} \left[ T v _ {j} \right] _ {\hat {a} _ {2}} \\ = \sum_ {j = 1} ^ {n} \alpha_ {j} \left[ \begin{array}{c} t _ {1 j} \\ t _ {2 j} \\ \vdots \\ t _ {m j} \end{array} \right] = \left| \begin{array}{c c c} \bar {t} _ {1 1} & \dots & t _ {1 n} \\ \vdots & \ddots & \vdots \\ t _ {n 1} & \dots & t _ {n n} \end{array} \right| \left| \begin{array}{c} \alpha_ {1} \\ \vdots \\ \alpha_ {n} \end{array} \right|. \\ \end{array} [ T r ] a ^ 2 = [ ∑ j = 1 n α j T v j ] a ^ 2 = ∑ j = 1 n α j [ T v j ] a ^ 2 = ∑ j = 1 n α j t 1 j t 2 j ⋮ t mj = t ˉ 11 ⋮ t n 1 … ⋱ … t 1 n ⋮ t nn α 1 ⋮ α n . n × n n \times n n × n 阵列 ∣ t i j ∣ \left|t_{ij}\right| ∣ t ij ∣ 依赖于 T T T 和基 B 1 \mathcal{B}_1 B 1 和 B 2 \mathcal{B}_2 B 2 的选择,但不取决于 x x x ,我们定义 T T T 的 B 1 − B 2 \mathcal{B}_1 - \mathcal{B}_2 B 1 − B 2 基表示为
[ T ] n 1 − [ t 11 … t n 1 ⋮ ⋱ ⋮ t 1 n … t m l ] = [ [ T v 1 ] n 2 … [ T v n ] n 2 ] . \begin{array}{r l} \left[ T \right] _ {n _ {1}} - & \left[ \begin{array}{l l l} t _ {1 1} & \dots & t _ {n _ {1}} \\ \vdots & \ddots & \vdots \\ t _ {1 n} & \dots & t _ {m l} \end{array} \right] = \left[ \left[ T v _ {1} \right] _ {n _ {2}} \dots \left[ T v _ {n} \right] _ {n _ {2}} \right]. \end{array} [ T ] n 1 − t 11 ⋮ t 1 n … ⋱ … t n 1 ⋮ t m l = [ [ T v 1 ] n 2 … [ T v n ] n 2 ] . 已经证明,对任一 x ∈ V x \in V x ∈ V , [ T x ] x 2 − x 2 [ T ] x 1 \left[Tx\right]_{x_2} - x_2\left[T\right]_{x_1} [ T x ] x 2 − x 2 [ T ] x 1 实际上,为了给出 T T T 的一个基表示, B 2 = B 1 B_2 = B_1 B 2 = B 1 的情形是最常见的; A 1 ⊂ T A_1 \subset T A 1 ⊂ T 称为 T T T 的 B 1 B_1 B 1 基表示。
考虑单位线性变换 I : V × V I: V \times V I : V × V ,它定义为对所有 x , I x = x x, I_x = x x , I x = x 。于是,对所有 x ∈ V x \in V x ∈ V ,有
[ x ] A 2 = [ I x ] A 2 = A 2 [ I ] A 1 [ x ] A 1 − A 2 [ I ] A 1 [ I x ] A 1 = A 2 [ I ] [ I ] A n [ x ] A n . \left[ x \right] _ {A _ {2}} = [ I x ] _ {A _ {2}} = _ {A _ {2}} [ I ] _ {A _ {1}} [ x ] _ {A _ {1}} - _ {A _ {2}} [ I ] _ {A _ {1}} [ I x ] _ {A _ {1}} = _ {A _ {2}} [ I ] [ I ] _ {A _ {n}} [ x ] _ {A _ {n}}. [ x ] A 2 = [ I x ] A 2 = A 2 [ I ] A 1 [ x ] A 1 − A 2 [ I ] A 1 [ I x ] A 1 = A 2 [ I ] [ I ] A n [ x ] A n . 依次取 x = w 1 , w 2 , … , w n x = w_{1},w_{2},\dots ,w_{n} x = w 1 , w 2 , … , w n ,这个恒等式能计算出 Φ ⋆ 1 [ I ] ⋆ 1 Φ ⋆ 1 [ I ] ⋆ 2 \mathbf{\Phi}_{\star_1}[\mathbf{I}]_{\star_1}\mathbf{\Phi}_{\star_1}[\mathbf{I}]_{\star_2} Φ ⋆ 1 [ I ] ⋆ 1 Φ ⋆ 1 [ I ] ⋆ 2 的每一列,因而证明了
x 2 [ I ] x 1 x 1 [ I ] x 2 = [ 1 0 ⋱ ( 0 ) 1 ] = I . \left. _ {x _ {2}} [ I ] _ {x _ {1}} x _ {1} [ I ] _ {x _ {2}} = \left[ \begin{array}{l l l} 1 & & 0 \\ & \ddots & \\ (0) & & 1 \end{array} \right] = I. \right. x 2 [ I ] x 1 x 1 [ I ] x 2 = 1 ( 0 ) ⋱ 0 1 = I . 我们泛泛采用同一个记号 I I I 表示 n × n n \times n n × n 单位矩阵和单位线性变换。如果从 [ x ] x 1 = [ I x ] x 2 = ⋯ [x]_{x_1} = [I_x]_{x_2} = \cdots [ x ] x 1 = [ I x ] x 2 = ⋯ 开始作同样的计算,也会得出
[ I ] k 1 ∣ I ] k 1 − I \left[ I \right] _ {k _ {1}} \left. \left| I \right] _ {k _ {1}} - I \right. [ I ] k 1 ∣ I ] k 1 − I 30
因此,矩阵 Φ A 1 [ I ] A 1 \mathbf{\Phi}_{\mathfrak{A}_1}[I]_{\mathfrak{A}_1} Φ A 1 [ I ] A 1 是矩阵 Φ A 1 [ I ] A 2 \mathbf{\Phi}_{\mathfrak{A}_1}[I]_{\mathfrak{A}_2} Φ A 1 [ I ] A 2 的逆矩阵.如果记 S = Φ A 1 [ I ] A 2 S = \mathbf{\Phi}_{\mathfrak{A}_1}[I]_{\mathfrak{A}_2} S = Φ A 1 [ I ] A 2 ,那么 S − 1 = Φ A 1 [ I ] A 2 S^{-1} = \mathbf{\Phi}_{\mathfrak{A}_1}[I]_{\mathfrak{A}_2} S − 1 = Φ A 1 [ I ] A 2 .于是,形如 Φ A 2 [ I ] A 2 \mathbf{\Phi}_{\mathfrak{A}_2}[I]_{\mathfrak{A}_2} Φ A 2 [ I ] A 2 的每一个矩阵都是可逆的.反过来每…个可逆矩阵 S = [ s 1 s 2 … s n ] ∈ M n ( F ) S = [s_1s_2\dots s_n]\in M_n(\mathbb{F}) S = [ s 1 s 2 … s n ] ∈ M n ( F ) 对某个基 B \mathcal{B} B 有形式 Φ A 1 [ I ] A \mathbf{\Phi}_{\mathfrak{A}_1}[I]_{\mathfrak{A}} Φ A 1 [ I ] A .可以把 B \mathcal{B} B 看成是用 [ s ˉ 1 ] s ˉ 1 = s 1 [\bar{s}_1]_{\bar{s}_1} = s_1 [ s ˉ 1 ] s ˉ 1 = s 1 , i = 1 , 2 , … , n i = 1,2,\dots,n i = 1 , 2 , … , n 定义的向量组 { s ⃗ 1 , s ⃗ 2 , … , s ⃗ n } \{\vec{s}_1,\vec{s}_2,\dots,\vec{s}_n\} { s 1 , s 2 , … , s n } .因为 S S S 可逆,所以向量组 B \mathcal{B} B 无关.
注意到
[ I ] A 1 = [ [ I v 1 ] A 2 … [ I v n ] A 2 ] = [ [ v 1 ] A 2 … [ v n ] A 2 ] , \left[ I \right] _ {A _ {1}} = \left[ \left[ I v _ {1} \right] _ {A _ {2}} \dots \left[ I v _ {n} \right] _ {A _ {2}} \right] = \left[ \left[ v _ {1} \right] _ {A _ {2}} \dots \left[ v _ {n} \right] _ {A _ {2}} \right], [ I ] A 1 = [ [ I v 1 ] A 2 … [ I v n ] A 2 ] = [ [ v 1 ] A 2 … [ v n ] A 2 ] , 于是, Φ B 2 [ I ] B 1 \mathbf{\Phi}_{\mathcal{B}_2}[I]_{\mathcal{B}_1} Φ B 2 [ I ] B 1 用基 B 2 \mathcal{B}_2 B 2 表示基 B 1 \mathcal{B}_1 B 1 的各个元素。现在 x ∈ V x \in V x ∈ V ,经计算
[ T ] x 2 [ x ] x 2 = [ T x ] x 2 = [ I ( T x ) ] x 2 = x 2 [ I ] x 1 [ T x ] x 1 = x 1 [ I ] x 1 x 1 [ T ] x 1 [ x ] x 1 = x 2 [ I ] x 1 x 1 [ T ] x 1 [ I x ] x 1 = A 2 [ I ] [ T ] [ I ] A 2 [ x ] A 2 . \begin{array}{l} \left[ T \right] _ {x _ {2}} [ x ] _ {x _ {2}} = \left[ T x \right] _ {x _ {2}} = \left[ I (T x) \right] _ {x _ {2}} = _ {x _ {2}} \left[ I \right] _ {x _ {1}} \left[ T x \right] _ {x _ {1}} \\ = _ {x _ {1}} [ I ] _ {x _ {1}} x _ {1} [ T ] _ {x _ {1}} [ x ] _ {x _ {1}} = _ {x _ {2}} [ I ] _ {x _ {1}} x _ {1} [ T ] _ {x _ {1}} [ I x ] _ {x _ {1}} \\ = _ {A _ {2}} [ I ] [ T ] [ I ] _ {A _ {2}} [ x ] _ {A _ {2}}. \\ \end{array} [ T ] x 2 [ x ] x 2 = [ T x ] x 2 = [ I ( T x ) ] x 2 = x 2 [ I ] x 1 [ T x ] x 1 = x 1 [ I ] x 1 x 1 [ T ] x 1 [ x ] x 1 = x 2 [ I ] x 1 x 1 [ T ] x 1 [ I x ] x 1 = A 2 [ I ] [ T ] [ I ] A 2 [ x ] A 2 . 依次取 x = w 1 , w 2 , … , w n x = w_{1},w_{2},\dots ,w_{n} x = w 1 , w 2 , … , w n ,便得出
[ T ] s 2 = s v [ I ] s 1 s 1 [ T ] s 1 s 1 [ I ] s 2 . \left[ T \right] _ {s _ {2}} = s _ {v} \left[ I \right] _ {s _ {1}} s _ {1} \left[ T \right] _ {s _ {1}} s _ {1} \left[ I \right] _ {s _ {2}}. [ T ] s 2 = s v [ I ] s 1 s 1 [ T ] s 1 s 1 [ I ] s 2 . 这个恒等式说明,如果用来计算表示的基发生变化, T T T 的基表示将如何变化。由于这个缘故,才称矩阵 z α [ I ] α \mathbf{z}_{\alpha} \left[ I \right]_{\alpha} z α [ I ] α 为基 B 1 − B 2 \mathcal{B}_1 - \mathcal{B}_2 B 1 − B 2 的变换矩阵。
任一矩阵 A ∈ M n ( F ) A \in M_{n}(\mathbf{F}) A ∈ M n ( F ) 是某个线性变换 T : V → V T: V \to V T : V → V 的一个基表示,这是因为,如果 B \mathcal{B} B 是 V V V 的任一基,可以用 [ T x ] π = A [ x ] π [Tx]_{\pi} = A[x]_{\pi} [ T x ] π = A [ x ] π 来确定 T x Tx T x 。不难算出,对这个 T T T , [ T ] π = A [T]_{\pi} = A [ T ] π = A 。
31