README
附录E Weierstrass定理
设 是具有范数 的有限维实或复向量空间。关于中心为 ,半径为 的球是 。我们称子集 是开集,是指对每个 ,都存在一个 ,使得 。子集 称闭集,是指 在 中的补集是开集。子集 称为有界的,是指存在 ,使得 。等价地, 是闭的,当且仅当 的任一收敛序列(关于 )的极限都在 中,而 是有界的,是指 包含在具有有限半径的任一球中。子集 是紧集,是指它既是闭的,又是有界的。
对于 ,一个函数 在 上可以达到或者不可以达到一个(全局)极大值或极小值。但是,在某些常见的情形,我们可以确信, 在 上达到一个极大值。
定理(Weierstrass)设 是有限维实或复向量空间 的紧子集。如果 是连续函数,那么存在点 ,使得对所有 有
且存在点 ,使得对所有 有
即 在 上达到它的极小值和极大值。当然,可能不止在 的一个点上达到值 和 ,如果 Weierstrass 定理的两个主要假定(紧的 和连续的 )不成立,结论可能不真。但是, 是一个有限维实或复向量空间的子集不是本质的。对子紧集的一个适当的定义,Weierstrass 定理对定义在一般拓扑空间的一个紧子集上的连续实值函数成立。
参考文献
Ait A. C. Aitken. Determinants and Matrices. 9th ed. Oliver and Boyd, Edinburgh, 1956.
Bar 75 S. Barnett. Introduction to Mathematical Control Theory. Clarendon Press, Oxford, 1975.
Bar 79 S. Barnett. Matrix Methods for Engineers and Scientists. McGraw-Hill, London, 1979.
Bar 83 S. Barnett. Polynomials and Linear Control Systems. Dekker, New York, 1983.
BB E. F. Beckenbach and R. Beliman. Inequalities. Springer-Verlag, New York, 1965.
Bel R. Bellman. Introduction to Matrix Analysis. 2d ed. McGraw-Hill, New York, 1970.
Boa R. P. Boas, Jr. A Primer of Real Functions. 2d ed. Carus Mathematical Monographs, No. 13. Mathematical Association of America, Washington, D.C., 1972.
BPl A. Berman and R. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York, 1979.
BSt S. Barnett and C. Storey. Matrix Methods in Stability Theory. Barnes & Noble, New York, 1970.
CaLe J. A. Carpenter and R. A. Lewis. KWIC Index for Numerical Algebra. U.S. Dept. of Commerce, Springfield, Va. Microfiche and printed versions available from National Technical Information Service, U.S. Dept. of Commerce, 5285 Port Royal Road, Springfield, VA 22161.
Chi L. Childs. A Concrete Introduction to Higher Algebra. Springer-Verlag, Berlin, 1979.
Cul C. G. Cullen. Matrices and Linear Transformations. Addison-Wesley, Reading, Mass., 1966.
Don W. F. Donoghue, Jr. Monotone Matrix Functions and Analytic Continuation. Springer-Verlag, Berlin, 1974.
Fad V. N. Faddeeva. Trans. C. D. Benster. Computational Methods of Linear Algebra. Dover, New York, 1959.
Fan Ky Fan. Convex Sets and Their Applications. Lecture Notes, Applied Mathematics Division, Argonne National Laboratory, Summer 1959.
Fie M. Fieldler. Spectral Properties of Some Classes of Matrices. Lecture Notes, Report No. 75.01R. Chalmers University of Technology and the University of Göteborg, 1975.
Fra J. Franklin. Matrix Theory. Prentice-Hall, Englewood Cliffs, N.J., 1968.
Gan F. R. Gantmacher. The Theory of Matrices. 2 vols. Chelsea, New York, 1959.
Gant F. R. Gantmacher. Applications of the Theory of Matrices. Interscience, New York, 1959.
GKr F. R. Gantmacher and M. G. Krein. Oszillationsmatrizen, Oszillationskerne, und keine Schwingungen mechanische Systeme. Akademie-Verlag, Berlin, 1960.
GLR 82 I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, New York, 1982.
GLR83 I. Gohberg, P. Lancaster, and L. Rodman. Matrices and Indefinite Scalar Products. Birkhäuser-Verlag, Boston, 1983.
Grah A. Graham. Kronecker Products and Matrix Calculus with Applications. Horwood, Chichester, U.K., 1981.
Gray F. A. Graybill. Matrices with Applications to Statistics. 2d ed. Wadsworth, Belmont, Calif., 1983.
Gre W. H. Greub. Multilinear Algebra. 2d ed. Springer-Verlag, New York, 1978.
GVI G. Golub and C. VanLoan. Matrix Computations. Johns Hopkins University Press, Baltimore, 1983.
Hal58 P. R. Halmos. Finite-Dimensional Vector Spaces. Van Nostrand, Princeton, N.J., 1958.
Hal67 P. R. Halmos. A Hilbert Space Problem Book. Van Nostrand, Princeton, N.J., 1967.
HJ R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1989.
HKu K. Hoffman and R. Kunze. Linear Algebra. 2d ed. Prentice-Hall, Englewood Cliffs, N.J., 1971.
Hou 64 A. S. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell, New York, 1964.
Hou 72 A. S. Householder. Lectures on Numerical Algebra. Mathematical Association of America, Buffalo, N.Y., 1972.
HSm M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York, 1974.
Jac N. Jacobson. The Theory of Rings. American Mathematical Society, New York, 1943.
Kap 1. Kaplansky. Linear Algebra and Geometry: A Second Course. Allyn & Bacon, Boston, 1969.
Kar S. Karlin. Total Positivity. Stanford University Press, Stanford, Calif., 1960.
Kel R. B. Kellogg. Topics in Matrix Theory. Lecture Notes, Report No. 71.04, Chalmers Institute of Technology and the University of Goteberg, 1971.
Kow H. Kowalsky. Lineare Algebra. 4th ed. deGruyter, Berlin, 1969.
LaH C. Lawson and R. Hanson. Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs, N.J., 1974.
P.Lancaster.TheoryofMatrices.AcademicPress,NewYork,1969.
LaTi P. Lancaster and M. Tismenetsky. The Theory of Matrices With Applications. 2d ed. Academic Press, New York, 1985.
Mac C.C.MacDuffee.The Theory ofMatrices.Chelsea,New York,1946.
Mar M. Marcus. Finite Dimensional Multilinear Algebra. 2 vols. Dekker, New York, 1973-75.
Air L. Mirsky. An Introduction to Linear Algebra. Clarendon Press, Oxford, 1963.
MMi M. Marcus and H. Minc. A Survey of Matrix Theory and Matrix Inequalities. Allyn & Bacon, Boston, 1964.
MOI A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applications. Academic Press, New York, 1979.
Mui T. Muir. The Theory of Determinants in the Historical Order of Development. 4 vols. MacMillan, London, 1906, 1911, 1920, 1923; Dover, New York, 1966. Contributions to the History of Determinants, 1900-1920. Blackie, London, 1930.
Ner E. Nering. Linear Algebra and Matrix Theory. 2d ed. Wiley, New York, 1963.
New M.Newman. Integral Matrices.Academic Press, New York, 1972. Nob B.Noble.Applied Linear Algebra.Prentice-Hall, Englewood Clift N.J.,1969.
Per S.Perlis.Theory of Matrices.Addison-Wesley,Reading,Mass.,1952.
Rog G. S. Rogers. Matrix Derivatives. Lecture Notes in Statistics, Vol. 2. Dekker, New York, 1980.
Rud W. Rudin. Principles of Mathematical Analysis. 3rd ed. McGraw-Hill, New York, 1976.
Sen E. Seneta. Nonnegative Matrices. Wiley, New York, 1973.
Ste G. W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973.
Str G. Strang. Linear Algebra and Its Applications. Academic Press, New York, 1976.
STy D. A. Suprenenko and R. I. Tyshkevich. Commutative Matrices. Academic Press, New York, 1968.
Tod J. Todd (ed.). Survey of Numerical Analysis. McGraw-Hill, New York, 1962.
TuA H. W. Turnbull and A. C. Aitken. An Introduction to the Theory of Canonical Matrices. Blackie, London, 1932.
Tur H. W. Turnbull. The Theory of Determinants, Matrices and Invariants. Blackie, London, 1950.
Val F.A.Valentine.Convex Sets.McGraw-Hill,New York,1964.
Var R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962.
Wed J. H. M. Wedderburn. Lectures on Matrices. American Mathematical Society Colloquium Publications XVII. American Mathematical Society, New York, 1934.
Wie H. Wielandt. Topics in the Analytic Theory of Matrices. Lecture Notes prepared by R. Meyer. Department of Mathematics, University of Wisconsin, Madison, 1967.
Wil J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.
索引
索引中的页码为英文原书页码。与书中页边标注的页码一致。
A
a priori bounds (先验界), 337
absolute (绝对)
convergene (收敛). 279, 300
value of a complex number (复数的值), 532
vector norm (向量范数), 285, 310, 365. 438
additive property, of inner product (内积的可加性), 260
adjoint (伴随)
classical (经典), 20
Hermitian (Hermite), 6
adjugate (转置伴随), 20
algebraically (代数)
closed field (闭域), 41, 537
alternating sum (交错和), 8
angle between vectors (向量间夹角), 15
annihilate (零化), 142
antilinear transformation (反线性变换), 250
approximation problems (逼近问题), 332, 427
augmented matrix (增广矩阵). 11. 12
B
back substitution (后向替换), 159
ball of radius (半径为 的球). 281, 541
basis (基), 3
change of (变换), 30
orthonormal (正交), 16
representation (表示), 31
bilinear form (双线性型), 169, 175
biorthogonality (双正交性), 59
Birkhoff's theorem (Birkhoff定理), 197, 527
Bochner's theorem (Bochner定理), 394
boundary (边界), 282
bounded set (有界集) 282, 541
Brauer
condition for invertibility (可逆条件), 381
region (区域), 380
theorem (定理), 380
Brualdi
condition for invertibility (可逆性条件), 389
region (区域)、385
theorem (定理), 385, 387
C
cancellation theorem (消去定理), 78, 141
canonical forms (标准形)
consimilarity (合相似). 251
integer matrices (整数矩阵). 158
irreducible normal form (不可约), 506
Jordan, 121
rational canonical (有理), 156
rational matrices (有理矩阵), 158
real Jordan (Jordan), 152
real orthogonal matrices (实正交矩阵), 108
rcal skew-symmetric matrices (实斜对称矩阵), 107
real symmetric matrices (实对称矩阵), 107
singular value decomposition (奇异值分解), 157.414ff
symmetric Jordan (对称 Jordan), 209
triangular factorization (三角分解), 157
Carmichael and Mason's bound on zeroes (关于零点的 Carmichael 界), 317, 318, 364
Cassini, ovals of (Cassini 椭圆形), 380
Cauchy
sequence (序列), 274
bound on zeros (关于零点的界), 316, 318, 364
(Cauchy Binet formula (Cauchy Binet 公式), 22)
Cayley-Hamilton theorem (Cayley-Hamilton 定理). 86
characteristic equation (特征方程), 87
characteristic polynomial (特征多项式), 38, 86, 87, 540
Cholesky factorization (Cholesky分解). 114, 407
closed set (闭集), 282, 541
closure (闭包). 282
cofactor (代数余子式). 17
column rank (列秩), 12
commutative ring (交换环). 95
commutator (换位了). 98
commuting family (交换族). 51, 81, 99, 139
compact set (紧集), 282, 541
completeness property of a vector space (向量空间的完备性), 271
complex (复)
conjugate (共轭), 531
numbers (数), 531, 532
concave function (凹函数), 534
condiagonalization (合对角化), 244, 248
condition number (条件数), 336, 340, 365, 366, 374, 442
conegenvalue (合特征值)
characterization (特征). 246
definition (定义). 245
coneigenvector (合特征向量), 245
conformal (共形的), 17
congruence (相合)
rongruence (相合), 220, 399, 164ff, 170
simultaneouscongruence,canonicalpairs(同时相合标准形偶).236
congruence (1) 220
conjugate linear (共轭线性). 169
conjunctive (共轭相合). 220
consimilarity (合相似), 234, 244
characterizations (的特征), 251
to a real matrix (于一个实矩阵), 255
consistent (相容)
linear equations (线性方程组), 12
vector norm (向量范数), 324
constrained extrema (约束极值), 34
continuous dependence of eigenvalues (特征值的连续依赖), 540
contriangularization (合三角化), 244
convergence of a sequence (序列的收敛), 269
convex (凸), 284
combination (组合), 535
cone (锥). 463
function (函数), 392, 533, 534-536
hull (包), 533
seis (集), 533-536
coordinate representation (坐标表示), 30
Courant-Fischer theorem (Courant Fischer定理), 179, 420, 424, 472
Cramer's rule (Cramer法则), 21
cycle (同路), 357
cyclic of index (指标 的循环),514
D
defect from normality (正规性亏损值), 316
defectiv (亏损), 58
deflation (压缩), 63, 83
delcted absolute row sums (去心绝对行和), 344
dependent (相关), 3
determinant (行列式), 7. 11. 398
determinantal inequalities (行列式不等式), 453, 167, 476-486
Fischer, 178
Gersgorin. 351
Hadamard. 477
Hadamard-Fischer, 485
Minkowski, 482
Oppenheim, 480
Ostrowski-Taussky, 481
Sasz. 479
diagonalizable (可对角化), 139, 145
hy orthogonal similarity (用正交相似), 211
definition (定义), 46
orthogonality (正交), 101
simultaneously (同时). 49
unitary (西), 101
diagonalization (对角化)
by congruence (用相合), 228
by consummolarity (用合相似), 234, 244, 248
by similarity (用相似), 46, 145
by unitary congruence (用酉相合), 204
by unitary consimilarity (用酉合相似), 244, 245
by unitary similarity (用酉相似), 101
simultaneous (同时), 52
diagonally dominant (对角占优), 349
strictly (严格), 302, 349
difference scheme (差分方法), 394
differential equations (微分方程), 132, 394
elliptic (椭圆型), 239, 459
hyperbolic (双曲型), 239
partial (偏), 168, 216, 218
dimension (维数). 4
direct sum (占和), 24
directed (有向)
graph of a matrix (矩阵图). 357, 517, 522
path (道路), 357
dual pair (对偶对), 278
duality theorem (对偶性定理), 287
E
edgs (边), 168
cigenspace (特征空间), 57
cigenvalue (特征值)
algebraic multiplicity (代数重数), 58, 60, 138.
497, 499
algebraically simple (代数单重). 371
definition (定义), 35
deflation to calculate (计算的压缩), 63
distinct (互异), 48
dominant (优势), 506
generalized (广义), 213
geometric multiplicity (几何重数), 58, 60.
141, 497, 498
illconditioned (病态),367
inclusion region (包含区域), 501
inclusion theorem (包含定理), 177
location (估计). 343
moments (矩). 43
of a sum (和的), 181, 184
perfectly conditioned (优态). 367
power method to calculate (求的解法), 62
principal submatrices (主子矩阵的), 189
well-conditioned (良态), 367
cigenvector (特征向量), 57
definition (定义), 35
left (左), 59, 371
positive (正), 493, 494, 495, 513
right (右), 59
elementary divisors (初等因子), 155
elementary symmetric functions (初等对称函数), 41
elliptic differential operator (椭圆型微分算子), 239
cquilibrated (均衡的), 283
equivalence relation (等价关系)
congruence (相合), 221
consimilarity (合相似), 251
definition (的定义), 45
vector seminorm (向量半范数的), 262
equivalent (等价)
matrices (矩阵), 164
orthogonally (上交), 73
real orthogonally (实正交), 73
unitarily (酉), 72
vector norms (向量范数), 273, 279
error analysis (误差分析), 335
Euler's theorem (Euler定理), 111
exponential of a matrix (矩阵指数), 300
extreme points (端点)
closed convex set (闭凸集), 533
doubly stochastic matrices (双随机矩阵), 528
extreme ray (极射线)
definition (定义), 463
positive semidfinite matrices (半正定矩阵的), 164
F
factor analysis (因子分析), 431
factorizations (分解), 156
Cholesky, 114. 407
complex skew-symmetric matrix (复斜对称矩阵), 217
complex symmetric matrix (复对称矩阵), 204
L.U. 158-165
polar (极), 156, 411, 412ff
product of two Hermitian matrices (两个 Hermite 矩阵之乘积), 172
QR, 112. 164, 406
singular value decomposition (奇异值), 411
Takagi,250,423,166
triangular 157
family (矩阵)族)
commuting (交换), 51, 81, 99, 139
commuting real normal (实正规交换), 108, 112
complex symmetric (复对称), 243
diagonalizable symmetric (可交换对称), 217
Hermitian (Hermite), 172
normal (1.规), 103
simultaneous condiagonalization (同时合对角化), 252
simultaneous diagonalization by congruence (经相合同时对角化), 239
simultaneous diagonalization by unitary congruence (经(相合同时对角化), 213
simultaneous singular value decomposition (同时奇异值分解), 126
simultaneous triangularization (同时角化), 84
Fan (樊)
k norms (k 范数), 145
theorem on eigenvalue location (关于特征值位置的定理), 501
Fejer (Fejer)
trace theorem, on positive semidefinite matrices
(关于半正定矩阵的迹定理),459
uniqueness theorem. for elliptic partial differential
equations (关于椭圆型偏微分方程的唯一性定理), 460
field (域).
of values (值域). 321. 332
forms (型)
bilinear (双线性), 169, 175
Hermiua (Hemite), 174
quadratic (二次), 168, 174, 214, 466
sesquilinear (半双线性), 169
forward substitution (前向替换), 159
fundamental theorem of algebra (代数基本定理), 537
G
general linear group (一般线性群), 14
generalized (广义)
coordinates (坐标), 227
inverse (逆), 421
matrix functions (矩阵函数), 8
Gersgorin
circles (圆), 346
disc theorem (圆盘定理), 344
discs (圆盘), 345, 353
region (区域), 345
Givens's method (Givens 法), 77
Gram-Schmidt process (Gram-Schmidt 过程), 15. 148
modified (修改的), 116
symmetric analogue (对称矩阵的类似), 211
graph (图), 168
group (群)
finiteAbelian (有限Abel),510
general linear (一般线性). 14
isometry (等距), 266, 267
orthogonal (正交), 69, 71
unitary (西), 69
11
Hadamard
exponential of a matrix (矩阵指数). 161
inequality(不等式).199,200,477,483
powers of a matrix (矩阵), 462
product (乘积), 321, 455, 456, 457, 474, 475
square root of a matrix (矩阵方根), 162
Hahn Banach theorem (Hahn-Banach 定理), 288
half spaces (半空间), 534
Hermittian
part (部分), 109, 170, 399
property (性质), 260
Hermiteian matrices (Hermite矩阵)
congruent (相合), 223, 224
product of three (三个Hermite 矩阵的乘积),469
product of two (两个Hermite矩阵的乘积), 172
Hermitian matrix (Hermite 矩阵), 104, 167, 169, 397
analogous to real numbers (比作实数), 170
characterizations (特征), 171
paritioned (分块), 175
product with positive definite matrix (与正定矩阵的乘积), 465
spectral theorem (的谱定理), 171
Hessian (Hessian)167,392,459,534
Hoffman-Wielandt theorem (Hoffman-Wielandt 定理). 368, 119
homogeneous (齐次性), 259, 260, 290
Hopf's bound (Hopf 界), 501
Householder
transformation (变换), 74, 77, 78, 117
method (法), 78
hyperbolic differential operator (双曲型微分算子), 239
hyperplane (超平面), 534
1
idempotent (解等), 37, 148, 311
identity (恒等式)
Newton. 11
parallelogram (平行四边形), 263
polarization (极化), 263
Sylvester. 22
ill-conditioned (病态), 336
imaginary (座)
axin (虚轴), 532
part of a complex number (复数的虚部), 531
inclusion (包含)
principle (原理), 189
region (区域). 378
independent (无关), 3
index (指标)
of an eigenvalue (特征值的), 131, 139, 148
ofnilpotence (幂零).37
induced matrix norm (诱导矩阵范数), 292
by absolute vector norm (由绝对范数), 310
by monotone vector norm (由单调范数). 310, 365
characterization (特征), 302, 307
inequality (不等式)
arithmetic geometric mean (算术-几何平均), 535
between matrix norms (矩阵范数间的), 314
between vector norms (向量范数间的), 279
bilinear (双线性), 473
Cauchy-Schwarz. 15, 261, 277, 535, 536
determinant (行列式), 351
Fischer, 178
Greub and Rheinboldt (Greub & Rieunboldt), 152
Grunsky. 202
Hadamard, 199, 200, 177, 183
Hadamard Fischer. 185
Holder. 276.535
Kantorovich, 444, 451, 452
matrix norm (矩阵范数), 290, 312
Minkowski, 265, 536
numerical radius (数值半径), 331
Oppenheim, 480
Ostrowski Taussky. 468, 481
positive definite function (1) 400
power for numerical radius (关于数值半径的幂). 333, 331
rank (秩), 352
Robertson, 468
square root continuity (平方根连续(函数)), 411
submultiplicative (次乘性), 290
Szasz. 479
triangle (三角), 259, 290
unitarily invariant matrix norm (两不变矩阵范数), 450
unitarily invariant norms (两不变向量范数). 147
Wieland, 112.443
inertia of a matrix (矩阵的惯性), 221
infinite series of matrices (矩阵的无穷级数). 300
inner product (内积). 140
characterization of norm derived from (由内积诱导的范数的特征), 263
definition (的定义), 260
Frobenius, 332
standard (标准), 14
usual (普通), 14
interior point (内点). 282
interlacing (交错)
eigenvalues theorem for bordered matrices (加边矩阵的特征值定理), 185
inequalities (不等式), 182, 185, 187, 189.
104, 419
property for singular values (奇异值的性质), 419
theorem (定理), 182
invariant (不变)
factors (因子), 154
subspace (子空间), 51
inverse (逆), 14
diagonal dominance (对角占优(矩阵)的逆), 355
errors in (矩阵)逆的误差), 335
irreducibly diagonally dominant (不可约对角占优 (矩阵)的逆). 363
minors of (逆的子式), 21
series for (逆矩阵的级数), 301
small rank adjustment (小秩修正矩阵的逆), 18
strict diagonal dominance (严格对角占优(矩阵)的逆), 302, 349
invertible (可逆). 14
irreducible matrix (不可约矩阵), 361, 362, 493, 506-515
minimal polynomial criterion (的极小多项式准则), 515
irreducible normal form (不可约正规形式), 506
irreducible diagonally dominant (不可约对角占优). 362
isometry (等距), 68
for a vector norm (关于向量范数), 266
isomorphism (同构), 4
J
Jacobi
identity (恒等式), 21
method (法), 76
Jordan
block (块), 121
normal form (法式), 121
Jordan canonical form (Jordan 标准形), 121, 129
real (实), 152
theorem (定理), 126
K
Kakcya's theorem (Kakcya定理), 318
kernel (核), 456, 462
Kojima's bound on zeroes (零点的 Kojima 界). 319, 364
Krein Milman theorem (Krein Milman 定理), 533, 534
Kronecker product (Kronecker 乘积), 474, 475
Krylov sequence (Krylov序列), 164
L
Lagrange
equations (方程组), 227
interpolating polynomial (插值多项式), 29, 188, 405
interpolation (插值法), 29
interpolation formula (插值公式), 30
Lanczos tridiagonalization (Lanczos 三对角化, 164
Laplace
equation (方程). 239
expansion (展开式), 7
least squares (最小二乘)
approximation (逼近), 429, 431, 515
solution (解), 421
left Perron vector (左 Perron 向量), 497
Levy Dcsplanques
condition for invertibility (可逆性条件), 302, 349
theorem (定理), 302, 349
limit(极限)
of a sequence (序列的), 270
point (点). 282
line segment(线段),289
linear(线性)
dependence(相关),3
independence(无关), 3, 407
transformation(交换). 5
loop(圈),358
M
majorization (优化), 199, 425, 446
and unitarily invariant norms (与西不变范数), 447
characterizations (特征), 197
definition (定义), 192
eigenvalues by diagonal entries (方阵) 对角元组
成的向量优化(其)特征向量),193,196
product inequality (乘积不等式), 199
spectrum of a sum (矩阵) 和的谱), 194
Markov chain(Markov 钝), 497
Mason and Carmichael's bound on zacrocs (零点的
Mason和Carmichael界).317,318,364
matrix (矩阵)
adjacency (邻接), 168, 523
almost diagonalizable (几乎可对角化), 89
approximation problems (逼近问题), 427
backward identity (后向单位), 28, 207
block diagonal (分块对角), 24
block triangular (分块角), 25. 90
bordered (加边), 185
change of basis (基变换), 32
circulant (轮换). 26
combinatorially symmetric (组合对称). 523
commuting (交换), 135
companion (友), 147, 149, 316
complex orthogonal (复正交)71, 72
complex symmetric (复对称). 201
compound (复合), 19
ronvergent (收敛), 137
correlation (相关), 400
covariance (协方差), 219, 239, 392, 424
diagonal (对角). 23
diagonalizable (可对角化), 46, 139, 145
doubly stochastic (双随机), 197, 527-529
equivalent (等价). 164
essentially nonnegative (本性非负), 506
essentially triangular (本性三角), 26
function of a (函数), 300
Gram, 407
Hankel, 27, 202, 393
Hermatian. 109, 167, 169
Hessenberg, 28
Hessian, 392, 459, 534
Hilbert, 341, 401
identity (单位), 6
indefinite (不定), 397
indicator (指标), 356
irreducible (不可约), 361, 362
Jacobian, 218
Jordan. 121, 129
negative definite (负定), 397
nilpotent (幂零), 139
nonderogatory (非减次). 135
normal (正规). 100
normal skew-symmetric (正规斜对称), 217
normal symmetric (正规对称), 207
orthogonal (1. 71, 72
orthogonally diagonalizable (正交对角化), 211
orthostochastic (正交随机), 197
permutation (置换), 25
rank one (秩1). 61
real orthogonal (实正交), 66, 72, 107
real skew-symmetric (实斜对称), 107
real symmetric (实对称), 107
reducible (可约), 360
scalar (纯量). 23
similarity (相似), 14
skew-Hermitian (斜Hermite), 100, 169
skew-orthogonal (斜正交), 72
skew-symmetric (斜对称), 109
skew-symmetric normal (斜对称正规), 217
stochastic (随机), 526-529
symmetric (对称), 167, 201
symmetric diagonalizable (对称可对角化), 211
symmetric normal (对称正规). 207
symmetric unitary (对称酉). 215
Toeplitz, 27. 136, 137, 394, 409, 456, 462
riangular (三角), 24
ridiagonal (二对角), 28, 174, 395, 409, 506
unitary (西), 66, 109
unitary characterizations (的西特征), 67
unitary symmetric (西对称), 215
Vandermonde, 29
weakly irreducible (弱不可约). 383
matrix functions, generalized (广义) 矩阵函数), 8
matrix norm (矩阵范数)
bound norm (有界范数). 294
Euclidean norm (Euclid 范数), 291
Frobenius norm (Frobenius 范数), 291
generalized (广义):320 342
Hilbert-Schmidt norm (Hilbert-Schmidt 范数), 291
induced (诱导), 307, 365
induced by a similarity (由相似诱导的), 296
induced by vector norm (由向量范数诱导的),
294
inequality for (关于不等式), 312
norm (1. 范数), 291
norm (12 范数). 291
(204 (2) 292
lub norm (lub 范数). 294
maximum column sum norm (极大列和范数). 294
maximum row sum norm (极大行和范数), 295
minimal (极小), 306, 307
not convex set (的非凸集), 312
operator norm (算子范数). 294
Schatten p norm (Schattenp 范数), 441
Schur norm (Schur范数), 291
self adjoint (自伴). 309
spectral norm (谱范数). 295, 441
trace norm (迹范数). 441
unitarily invariant (西不变), 292, 296, 308
max min theorem (极大极小定理), 179, 493, 196, 504
maximal element (极大元), 384
maximum of a continuous function (连续函数的极大值). 541
McCoy's theorem (McCoy定理), 94, 97
Mercer's theorem (Mercer定理), 456
metric convex hull (度量凸包), 289
min-max theorem (极小极大定理),179,193,496
minimal polynomial (极小多项式), 142, 145
algorithm to compute (的算法), 144, 148
definition (的定义). 143
diagonalization criterion (对角化的极小多项式准则), 145
of a direct sum (直和的), 149
minimally spectrally dominant (极小谱优势). 330
Minkowski determinant inequality (Minkowski行列式不等式). 182
minor (子式), 17
principal (主), 17. 40, 398
signcd (带正负号), I7
moments of eigenvalues (特征值的矩), 43, 44
moment sequence (矩序列)
Hausdorff, 393
Toeplitz, 393
moments (矩)
algebraic (代数), 393
trigonometric (三角), 393, 455, 456
monotonicity theorem (单调性定理), 182
Montel's bound on zeros (多项式)零点的
Montel界),317,318,364
Moore Penrose generalized inverse (Moore Penrose广义逆). 121
multilinear (多重线性), 11
N
Nchari's theorem (Nchari定理), 202
nodes (结点), 168
nondefective (非亏损), 58, 103
nonderogatory (非减次), 58, 135, 147
nonnegative (非负), 259, 260, 290
nonnegative matrix (非负矩阵), 359
applications (的应用), 487-490
definition (的定义), 490
doubly stochastic (双随机), 527-529
eigenvalues (特征值), 189, 503-505, 507-515
cigenvectors (特征向量).489,503-505,507-515
general limit theorem (一般极限定理), 524
irreducible (不可约), 507-515
limit of powers (幂的极限), 489
limit theorems (极限定理), 500, 516, 524, 525
Perron root (Perron 根), 505, 508
Perron vector (Perron 向量), 505. 508
Perron-Frobenius theorems (Perron-Frobenius 定理), 508-511
primitive matrices (素矩阵), 515-524
spectral radius (谱半径), 489, 491-495, 503-505, 507-515
stochastic (随机), 526-529
non-singularity. characterizations of (非奇异性的特征), 14
nontrivial cycle (非平凡回路), 383
norm (范数)
and inversion (与可逆性), 301
characterization of derived (诱导范数的特征), 263
compatible (相容), 294, 324
consistent (协和). 324
dual (对偶), 275, 410
dual pair (对偶对), 278
minunally spectrally dominant (极小谱优势), 330
pre norm (准范数), 272
spectrally dominant (谱优势), 324
subordinate (从属), 324
normal matrix (正规矩阵)
characterizations (特征), 101, 108-112
definition (定义), 100
perfectly conditioned eigenvalues (优态特征值),367
real (实). 104ff
null space (零空间), 5, 262
numerical radius (数值半径), 321, 331, 332, 333, 334
numerical range (数值范围), 321
0
open set (开集), 282, 541
operator norm (算子范数). 294
orthogonal (正交)
complement (分量). 16
vectors (向量), 15
orthogonality (15)
orthogonally (正交)
diagonalizable (可对角化). 101
equivalent (等价), 73
orthonormal (标准正交), 15
basis (基). 16
Ostrowski
condition for invertibility (可逆性条件), 381
region (区域), 378, 379
theorem (定理), 224, 378
ovalsofCassini (Cassini椭圆形).380
P
partitioned matrix (分块矩阵)
definition (的定义), 17
inverse (18, 472
Schur complement, 472
Pearcy's theorem (Pearcy定理), 76
perfectly conditioncd (优态), 336
permanent (积利式). 8
permutation invariant (置换不变(函数)),368,438
Perron
root(根),497,505,508
theorem (定理), 500
vector (向量), 497, 505, 508
Perron-Frobenius theorems (Perron-Frobenius定理).508-511
perturbation (扰动)
cigenvalues (特征值), 198, 343, 364
linear equations (线性方程组). 335
theorems (定理), 364
plane rotations (平面旋转), 74
Poincaré separation theorem (Poincaré分离定理), 190, 141
polar (极)
coordinates in complex plane (复平面的极坐标), 532
decomposition (极分解)
polar form (极形式), 156, 411, 412ff
examples and applications (例及应用), 427ff
polynomial (多项式)
bounds for zeroes of (零点的界), 316-319
continuous dependence of zeros on coefficients
(的零点对(其)系数的连续依赖),539
for inverse (逆矩阵的). 88
in a matrix (矩阵的), 36, 135, 142
monic(首·),142
similarityinvariants (相似不变量),154
zeros of a (的零点), 537
zeros of a real (实的零点), 538
poorlyconditioned(坏条件),336
positive (iF(定)), 259, 260, 290
cone (锥), 398
definite function (函数), 400, 401, 163
definite kernel (核), 402, 462
positive definite matrix (正定矩阵), 250
applications (的应用), 391-396, 459
characteristic polynomial (的特征多项式), 403
characterizations (402)
concavity of logarithm of the determinant (行列式的对数凹性), 466
concavity of trace of the inverse (的逆的迹的四性), 468
definition (定义), 396
determinant criterion (行列式判别准则), 404
determinantal inequalities (行列式不等式), 476 486
cigenvalues (的特征值), 402
kth root (k次根), 405
ordcring(次序关系), 469ff
positivematrix (正矩阵), 359
definition (的定义), 490
eigenvalues (特征值), 495-503
cigenvectors (特征向量), 495-503
left Perron vector (左 Perron向量), 497
Perron root (Perron 根), 497
Perron vector (Perron 向量), 497
Perron's theorem (Perron定理), 500
spectral radius (谱半径), 495-503
positivc semidefinite matrix (半正定矩阵), 182
definition (定义), 396
kth root (k次根), 405
ordering (次序关系). 469ff
rank (秩 ),457
positive semidefinite ordering (半正定次序关系), 469
power method (幂法), 62, 523
preorder (预序), 384
primitive matrix (素(或本原)矩阵), 515-524
characterizations (的特征), 516, 517
definition (的定义), 516
directed graph (的有向图), 517
eigenvalues (的特征值), 516
Holloday-Varga theorem (的 Holloday-Varga 定理), 520
index of primitivity (的本原指标), 519
Wielandt's theorem (Wielandt定理), 520
procrustean transformation (强行变换), 431
property (性质)
L. 97. 100
P. 100
SC,355,358,359,362
pure imaginary complex number (纯虚复数), 532
Q
QR
algorithm (算法), 114
factorization (分解), 112, 164, 406
quasi-linearization (拟线性化), 191, 453, 455, 486
R
range (值域), 5
rank (秩). 12
equalities (秩的等式), 13
incqualities (秩的不等式), 13, 175, 352, 458
rank one (秩1)
approximation (逼近), 127
limit (极限), 499
matrix(矩阵), 61
rational(有理)
canonical form(标准形), 156
form (形), 154
Rayleigh Ritz
ratio (比). 176
theorem (定理), 176, 422
real (实)
axis (实轴), 532
Jordan canonical form (实 Jordan 标准形), 152
part of a complex number (复数的实部), 531
rectangular coordinates in complex plane (复平面中的直角坐标), 532
residual vector (剩余向量), 338, 373, 374
reverse order law (倒序律). 6
Riemann sum (Riemann 和), 462
right (右)
eigenvector (右特征向量), 59
half-plane (右半平面), 532
Romanovsky's theorem (Romanovsky定理), 517
rotation problem (旋转问题). 431, 435
round-off errors (舍入误差), 335
row rank (行秩), 12
row-reduced echelon form (RREF) (行简化梯形阵), 10
s
scalar product (纯量积), 14
Schur
complement (补), 21, 472
majorization theorem (优化定理), 193
norm (范数). 291
product (乘积)
product theorem (乘积定理), 455, 458
unitary triangularization theorem (两三角化定理), 79, 83
self-adjoint vector norm on matrices (关于矩阵的自伴向量范数), 450
sensitivity (灵敏度)
of eigenvalues (特征值的), 372
of eigenvectors (特征向量的), 373
of solutions of linear equations (线性方程组解的), 339
separating hyperplane theorem (分离超平面定理). 534
shift operator (移位算子), 38
signature of a matrix (矩阵的符号差), 221
signum(sgn) (正负号),8
similarity (相似(性)). 44
inverse to adjoint (逆相似于伴随), 70
matrix and its transpose (矩阵与其转置). 134
to a real matrix (相似于实矩阵), 172
to a real matrix, (AA相似于实矩阵), 253
to adjoint (相似于伴随), 172
simultaneous (同时)
congruence, canonical pairs (‘相合下的标准形偶), 236
condiagonalization (合对角化), 252
simultaneous diagonalization (同时对角化), 49, 52
by "congruence (用"相合), 240, 464ff
by congruence (用相合), 228, 241, 250
by unitary congruence (用酉相合), 228, 235
characterization of (的特征), 228
singular (奇异), 14
singular value decomposition (奇异值分解), 157, 205, 325, 411, 414ff, 421
examples and applications (的例及应用), 427ff
simultaneous (同时), 426
singular values (奇异值), 205. 415
largest (最大), 421
of a product (乘积的), 423
of a sum (和的). 423
perfectly conditioned (优态), 418
variational characterization (420)
skew Hermitian (斜Hermite)
matrix (矩阵), 100, 169
part (部分), 109, 170, 399
solution equivalent systems (解等价方程组), 11
span (张成)2,3
Specht's theorem (Specht定理), 76
spectral characteristic (谱示性数), 330
spectral radius (谱半径). 35, 198, 296, 313. 348, 489
as a limit of matrix norms (作为矩阵范数极限的), 297
as a limit using norms or pre norms, (作为用范数或准范数表示的极限的), 299, 322
spectral theorem (谱定理)
Hermitian matrices (Hermite 矩阵的), 104, 171
normal matrices (正规矩阵的), 101, 425
spectrally dominant (谱优势), 329
spectrum (谱), 35
of a sum (矩阵) 和的), 92
of a sum by majorization (用优化表示和的谱), 194
square root of a matrix (矩阵的平方根), 54, 405
continuity of (的连续性), 411
standard (标准)
basis (基), 4
inner product (内积), 14
strictly diagonally dominant (严格对角占优(矩阵), 302, 349
strongly connected directed graph (强连通有向图), 358, 362, 383
submatrix (子矩阵). 4
eigenvalues (的特征值), 189
principal (主), 17, 397
submultiplicative (次乘性), 290
subspace (子空间), 2
invariant (不变), 51
Sylvester's law of inertia (Sylvester 惯性定律),
238
analoguc for symmetric matrices (对称矩阵的模拟), 225
homotopy proof (同伦证明). 242
symmetric (对称)
gauge function (度规函数), 438, 445
symmetric matrix (对称矩阵). 167, 397
diagonalizable (对角化), 211
every matrix similar to a (每个矩阵相似于一个), 209
product of two (两个对称矩阵的乘积), 210
real(实),169,218
Szasz's inequality (Szasz 不等式), 479
T
Takagi's factorization (Takagi分解), 204, 423, 466
asconsimilarityanalogueofspectraltheorem(类似于谱定理的合相似下的),250
Hua'sproof (Hua证明),217
Siegel'sproof (Siegcl证明),216
Tausky's theorem (Taussky定理). 363
topological notions (拓扑概念), 282, 288
trace (迹). 40, 175, 398
norm (迹范数), 441, 445
zero (迹为零), 77
transpose (转置(矩阵)), 6
transposition (对换(矩阵)). 25
triangularization (三角化)
byconsimilarity (用合相似),244,245
by unitary congruence (用酉相合), 203
by unitaryconsimilarity (用西合相似),244,245
by unitary similarity (用酉相似), 79
orthogonal (正交), 84
simultaneous (同时), 81, 84, 94
tripotent (三次幂等), 148
trivial cycle (平凡回路), 358
truncation errors (截断误差), 335
U
unit (单位)
disc (圆盘), 532
sphere (球面). 273
unit ball (单位球), 273, 281
compact (紧), 283, 284
convex (p), 284
equilibrated (均衡), 284
properties of (的性质), 283
unitarily diagonalizable (西可对角化), 10!
unitarilyequivalent (两等价)
definition (定义), 72
equal diagonal entries (对角元相等的矩阵). 77
Specht's theorem (酉等价的 Specht 定理), 76
to upper triangular matrix (于上三角矩阵), 79
unitarily invariant matrix norms (酉不变矩阵范数), 296, 308
set is convex (之集是凸集), 450
unitarily invariant vector norm. on matrices (关于矩阵的酉不变向量范数), 437, 441, 445
Von Neumann's characterization (the Von Neumann特征), 438
when a matrix norm (何时是矩阵范数), 450
unitary group (两群)
unitary matrix (酉矩阵), 66-72, 157
characterizations (67
definition (的定义). 66
selection principle (的选择原理). 69
upper half-plane (上半平面), 532
V
variational characterization of eigenvalues (特征值的变分特征), 176
vector (向量)
normalized (正规化), 15
unit (单位), 15
vector norm (向量范数)
absolute (绝对), 285, 310, 365, 438
algebraic properties (代数性质), 268
analytic properties (分析性质), 269
Cauchy sequence with respect to a (关于向量范数的 Cauchy序列), 274
characterization via unit ball (的单位球的特征). 284
compatible (相容). 324. 327
consistent (协和), 321
convergence with respect to a (关于向量范数收敛), 269
definition (的定义), 259
derived from inner product (由内积诱导的), 262
dual (对偶), 275
duality theorem (对偶性定理), 287
equivalent (的等价). 273. 279
Euclid (Euclid), 264
geometric properties (几何性质), 281
norm ( 范数),263
norm (t范数).264
norm ( 范数).265
l norm (1. 范数), 265, 322
norm (L范数), 266
norm (范数). 266
norm ( 范数), 267
l. norm (L. 范数), 267
Manhattan norm (Manhattan 范数), 265
max norm (极大范数), 265
monotone (单调), 285, 310, 365, 449
on matrices (关于矩阵的), 320-342
polyhedral (多面), 282
pre norm (准范数), 272, 322
spectrally dominant (谱优势), 329
subordinate (从属), 324
sum norm (相), 265
uniformly continuous (一致连续(性)), 271
unit ball (单位球), 273, 281
unit sphere (单位球面), 273
unitarily invariant (西不变), 265, 267
unarily invariant on matrices (矩阵的酉不变), 437
weakly monotone (弱单调), 285
vector seminorm (向量半范数), 250
vector space (向量空间). 2
complete (完备), 271
Von Neumann
inner product theorem (内积定理), 263
unitarily invariant norm theorem (两不变范数定理), 438
W
weak minimum principle (弱极小原理), 460
weakly connected directed graph (弱连通有向图), 383
Weierstrass's theorem (Weierstrass 定理). 541
weighted arithmetic-geometric mean inequality (加权算术几何平均值不等式), 535
well conditioned (良态的), 336
Weyl's theorem (Weyl定理), 181, 184, 367, 419, 423
Wielandt
example (例).522
theorem (定理), 520
Witt cancellation theorem (Witt 消去定理). 78.141