3.2_几类重要的矩阵变换

3.2 几类重要的矩阵变换

矩阵计算的一个基本思想就是把复杂的问题转化为等价的且易于求解的问题. 完成这个转化的基本工具就是矩阵变换, 除了高等代数 (或线性代数) 中提到的三类初等变换以外, 在矩阵计算中常用的矩阵变换还有: Gauss 变换, Householder 变换和 Givens 变换, 其中 Gauss 变换主要用于矩阵的 LU 分解, Householder 变换和 Givens 变换是正交变换, 可用于计算线性最小二乘问题、矩阵特征值和奇异值问题等.

3.2.1 初等矩阵变换

本科高等代数教材中介绍了三类初等矩阵变换, 这里将其推广到更一般的情形. 我们称

E(u,v,τ)=Iτuv(3.3)E (u, v, \tau) = I - \tau u v ^ {*} \tag {3.3}

为初等矩阵变换或初等矩阵, 其中 u,vCnu, v \in \mathbb{C}^n 是非零向量, τ\tau 是一个非零复数. 因此, 初等矩阵是单位矩阵的一个秩 1 修正.

高等代数中介绍的三类初等变换 (elementary transformation) 分别是 (以行变换为例): (1) 交换两行; (2) 某行乘以一个非零常数; (3) 某行乘以一个常数后加到另外一行. 这三类变换所对应的矩阵为 (简单示例)

E1=[10101],E2=[11c11],E3=[11c11].E _ {1} = \left[ \begin{array}{c c c c c} 1 & & & & \\ & \ddots & & & \\ & & 0 & 1 & \\ & & \ddots & 0 & \\ & & & \ddots & 1 \end{array} \right], E _ {2} = \left[ \begin{array}{c c c c c} 1 & & & & \\ & \ddots & 1 & & \\ & & c & & \\ & & & 1 & \\ & & & \ddots & 1 \end{array} \right], E _ {3} = \left[ \begin{array}{c c c c c} 1 & & & & \\ & \ddots & & \\ & & 1 & & \\ & & c & \ddots & 1 \\ & & & & \ddots & 1 \end{array} \right].

可以验证, 它们都可以表示为 (3.3) 形式, 留作练习

下面的定理给出了初等矩阵的基本性质

定理3.1 设 E(u,v,τ)E(u,v,\tau) 是一个初等矩阵, 我们有

(1) det(E(u,v,τ))=1τvu\operatorname{det}(E(u, v, \tau)) = 1 - \tau v^* u ;
(2) 若 1τvu01 - \tau v^{*}u\neq 0 ,则 E(u,v,τ)E(u,v,\tau) 非奇异,且

(E(u,v,τ))1=E(u,v,γ),其 中γ=ττvu1.(E (u, v, \tau)) ^ {- 1} = E (u, v, \gamma), \quad \text {其 中} \gamma = {\frac {\tau}{\tau v ^ {*} u - 1}}.

(3) 对任意非零向量 x,yCnx, y \in \mathbb{C}^n , 存在 u,vCnu, v \in \mathbb{C}^nτC\tau \in \mathbb{C} , 使得

E(u,v,τ)x=y.E (u, v, \tau) x = y.

(板书)

证明. (1) 易知

[I0v1][Iτuvτu01][I0v1]=[Iτu01τvu].\left[ \begin{array}{c c} I & 0 \\ v ^ {*} & 1 \end{array} \right] \left[ \begin{array}{c c} I - \tau u v ^ {*} & - \tau u \\ 0 & 1 \end{array} \right] \left[ \begin{array}{c c} I & 0 \\ - v ^ {*} & 1 \end{array} \right] = \left[ \begin{array}{c c} I & - \tau u \\ 0 & 1 - \tau v ^ {*} u \end{array} \right].

由行列式的乘法可知

det([I0v1])det([Iτuvτu01])det([I0v1])=det([Iτu01τvu]).\det \left(\left[ \begin{array}{c c} I & 0 \\ v ^ {*} & 1 \end{array} \right]\right) \cdot \det \left(\left[ \begin{array}{c c} I - \tau u v ^ {*} & - \tau u \\ 0 & 1 \end{array} \right]\right) \cdot \det \left(\left[ \begin{array}{c c} I & 0 \\ - v ^ {*} & 1 \end{array} \right]\right) = \det \left(\left[ \begin{array}{c c} I & - \tau u \\ 0 & 1 - \tau v ^ {*} u \end{array} \right]\right).

所以

det(E(u,v,τ))=det(Iτuv)=1τvu.\det \left(E (u, v, \tau)\right) = \det (I - \tau u v ^ {*}) = 1 - \tau v ^ {*} u.

(2) 若 1τvu01 - \tau v^{*}u \neq 0 , 则 det(E(u,v,τ))0\operatorname{det}\left(E(u,v,\tau)\right) \neq 0 , 所以 E(u,v,τ)E(u,v,\tau) 非奇异. 通过直接计算可知

E(u,v,τ)E(u,v,γ)=Iτuvγ(1τvu)uv=Iτuvττvu1(1τvu)uv=I.\begin{array}{l} E (u, v, \tau) E (u, v, \gamma) = I - \tau u v ^ {*} - \gamma (1 - \tau v ^ {*} u) u v ^ {*} \\ = I - \tau u v ^ {*} - \frac {\tau}{\tau v ^ {*} u - 1} (1 - \tau v ^ {*} u) u v ^ {*} \\ = I. \\ \end{array}

(3) 留作练习.

更一般地, 我们有下面的结论

Sylverster 降幂公式

ACm×n,BCn×mA\in \mathbb{C}^{m\times n},B\in \mathbb{C}^{n\times m} ,其中 mnm\geq n ,则有

det(λIAB)=λmndet(λIBA).(3.4)\det (\lambda I - A B) = \lambda^ {m - n} \det (\lambda I - B A). \tag {3.4}

因此 ABABBABA 具有相同的非零特征值

(留作练习)

定理3.2 设 ACn×nA \in \mathbb{C}^{n \times n} , 则 AA 非奇异当且仅当 AA 可以分解成若干个初等矩阵的乘积

3.2.2 Gauss变换

lj=[0,,0,lj+1,j,,ln,j],j=1,2,,n,l_{j} = [0,\dots ,0,l_{j + 1,j},\dots ,l_{n,j}]^{\top},j = 1,2,\dots ,n, 则Gauss变换定义为

L(lj)E(lj,ej,1)=I+ljejT=[11lj+1,j1ln,j1].L (l _ {j}) \triangleq E (l _ {j}, e _ {j}, - 1) = I + l _ {j} e _ {j} ^ {\mathsf {T}} = \left[ \begin{array}{c c c c c c} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & l _ {j + 1, j} & 1 & & \\ & & \vdots & & \ddots & \\ & & l _ {n, j} & & & 1 \end{array} \right].

显然, Gauss 变换也属于初等矩阵变换. 向量 ljl_{j} 称为 Gauss 向量 [57]. 由定理 3.1 可知

det(L(lj))=1,(L(lj))1=E(lj,ej,1)=E(lj,ej,1)=L(lj).\det (L (l _ {j})) = 1, \quad (L (l _ {j})) ^ {- 1} = E (l _ {j}, e _ {j}, 1) = E (- l _ {j}, e _ {j}, - 1) = L (- l _ {j}).

Gauss变换是对单位矩阵的秩1修正, 主要功能是消零, 即将指定的某些元素变为零.
Gauss变换有时也称为初等下三角矩阵

3.2.3 Householder变换

定义3.1 我们称矩阵

H=Iβvv,0vCn,β=2vv(3.5)H = I - \beta v v ^ {*}, \quad 0 \neq v \in \mathbb {C} ^ {n}, \quad \beta = \frac {2}{v ^ {*} v} \tag {3.5}

为 Householder 矩阵或 Householder 变换, 向量 vv 称为 Householder 向量. 我们通常将矩阵 (3.5) 记为 H(v)H(v) .

Householder 矩阵也是初等矩阵.
A有时也将Householder变换定义为

H=I2vv,vCnv2=1.H = I - 2 v v ^ {*}, \quad v \in \mathbb {C} ^ {n} \text {且} \| v \| _ {2} = 1.

Householder 矩阵有时也称为初等 Hermite 矩阵 [151].

从几何上看, 一个 Householder 变换是一个关于超平面 span{v}\operatorname{span}\{v\}^{\perp} 的反射. 由于 Cn=span{v}span{v}\mathbb{C}^n = \operatorname{span}\{v\} \oplus \operatorname{span}\{v\}^{\perp} , 因此对任意向量 xCnx \in \mathbb{C}^n , 都可写为

x=xv+xv,其 中xvspan{v},xvspan{v}.x = x _ {v} + x _ {v ^ {\perp}}, \quad \text {其 中} \quad x _ {v} \in \operatorname {s p a n} \{v \}, x _ {v ^ {\perp}} \in \operatorname {s p a n} \{v \} ^ {\perp}.

易知 xv=vxvvv.x_{v} = \frac{v^{*}x}{v^{*}v} v. 于是

Hx=xβvvx=x2vxvvv=vxvvv+xv=xv+xv,H x = x - \beta v v ^ {*} x = x - \frac {2 v ^ {*} x}{v ^ {*} v} v = - \frac {v ^ {*} x}{v ^ {*} v} v + x _ {v ^ {\perp}} = - x _ {v} + x _ {v ^ {\perp}},

HxHxxxspan{v}\operatorname{span}\{v\}^{\perp} 方向有着相同的分量, 而在 vv 方向的分量正好相差一个符号. 也就是说, HxHxxx 关于超平面 span{v}\operatorname{span}\{v\}^{\perp} 的镜面反射, 见图3.1. 因此, Householder变换也称为Householder反射或反射变换.


图3.1.Householder变换的几何意义

下面是关于Householder矩阵的几个基本性质

定理3.3 设 HCn×nH \in \mathbb{C}^{n \times n} 是一个Householder矩阵, 则

(1) H=HH^{*} = H ,即 HH 是Hermite的;
(2) HH=IH^{*}H = I ,即 HH 是酉矩阵;
(3) H2=IH^{2} = I ,所以 H1=HH^{-1} = H
(4) det(H)=1\operatorname{det}(H) = -1 ;
(5) HH 有两个互异的特征值: λ=1\lambda = 1λ=1\lambda = -1 , 其中 λ=1\lambda = 1 的代数重数为 n1n - 1 .

Householder 矩阵的一个非常重要的应用就是可以将一个向量除第一个元素以外的所有元素都化为零. 我们首先给出一个引理.

引理3.4设 x,yCnx,y\in \mathbb{C}^n 为任意两个互异的向量,则存在一个Householder矩阵 H(v)H(v) 使得 y=H(v)xy = H(v)x 的充要条件是 x2=y2\| x\| _2 = \| y\| _2xyRx^{*}y\in \mathbb{R} (板书)

证明. 若 x2=y2\| x\| _2 = \| y\| _2xyRx^{*}y\in \mathbb{R} ,则 yy=xxy^{*}y = x^{*}xxy=yx.x^{*}y = y^{*}x. 于是

xy22=(xy)(xy)=xxyxxy+yy=2(xxyx).\left\| x - y \right\| _ {2} ^ {2} = (x - y) ^ {*} (x - y) = x ^ {*} x - y ^ {*} x - x ^ {*} y + y ^ {*} y = 2 \left(x ^ {*} x - y ^ {*} x\right).

v=xyv = x - y ,则有

H(v)x=x2(xy)(xy)xxy22=x2(xy)(xxyx)2(xxyx)=y,H (v) x = x - \frac {2 (x - y) (x - y) ^ {*} x}{\| x - y \| _ {2} ^ {2}} = x - \frac {2 (x - y) (x ^ {*} x - y ^ {*} x)}{2 (x ^ {*} x - y ^ {*} x)} = y,

即存在 Householder 矩阵 H(v)H(v) 使得 y=H(v)xy = H(v)x

反之, 如果存在 Householder 矩阵 HH 使得 y=Hxy = Hx , 由于 HH 是 Hermite 的, 所以 xy=xHxRx^{*}y = x^{*}Hx \in \mathbb{R} . 又因为 HH 是酉矩阵, 所以 y2=Hx2=x2\|y\|_{2} = \|Hx\|_{2} = \|x\|_{2} .

Householder 向量也可以取 v=eiθ(xy),0θ<2πv = e^{\mathrm{i}\theta}(x - y), 0 \leq \theta < 2\pi

如果 x,yx, y 都是实向量,则条件 xyRx^{*}y \in \mathbb{R} 自然成立,此时充要条件就是 x2=y2\| x \|_{2} = \| y \|_{2}

由引理3.4, 我们可以立即得到下面的结论

定理3.5设 x=[x1,x2,,xn]Rnx = [x_{1},x_{2},\ldots ,x_{n}]^{\top}\in \mathbb{R}^{n} 是一个非零向量,则存在Householder矩阵 H(v)H(v) 使得 H(v)x=αe1H(v)x = \alpha e_1 ,其中 α=x2\alpha = \| x\| _2 (或 α=x2),e1=[1,0,,0]Rn.\alpha = -\| x\| _2),e_1 = [1,0,\dots ,0]^{\top}\in \mathbb{R}^{n}.

在后面的讨论中, 我们将定理中的向量 vv 称为 xx 对应的 Householder 向量.

x=[x1,x2,,xn]TRnx = [x_{1}, x_{2}, \ldots, x_{n}]^{\mathsf{T}} \in \mathbb{R}^{n} 是一个实的非零向量,下面讨论如何计算定理3.5中Householder矩阵 H(v)H(v) 所对应的Householder向量 vv 。由引理3.4的证明过程可知

v=xαe1=[x1α,x2,,xn].v = x - \alpha e _ {1} = \left[ x _ {1} - \alpha , x _ {2}, \dots , x _ {n} \right] ^ {\intercal}.

在实际计算中, 为了尽可能地减少舍入误差, 我们通常避免两个相近的数做减运算, 否则就会损失有效数字. 因此, 我通常取

α=sign(x1)x2.(3.6)\alpha = - \operatorname {s i g n} \left(x _ {1}\right) \cdot \| x \| _ {2}. \tag {3.6}

事实上, 我们也可以取 α=sign(x1)x2\alpha = \mathrm{sign}(x_1)\| x\| _2 ,但此时为了减少舍入误差,我们需要通过下面的公式来计算 vv 的第一个分量 v1v_{1}

α=sign(x1)x2,v1=x1α=x12x22x1+α=(x22+x32++xn2)x1+α.(3.7)\alpha = \operatorname {s i g n} \left(x _ {1}\right) \| x \| _ {2}, \quad v _ {1} = x _ {1} - \alpha = \frac {x _ {1} ^ {2} - \| x \| _ {2} ^ {2}}{x _ {1} + \alpha} = \frac {- \left(x _ {2} ^ {2} + x _ {3} ^ {2} + \cdots + x _ {n} ^ {2}\right)}{x _ {1} + \alpha}. \tag {3.7}

v1v_{1} 的两种计算方法 (3.6) 和 (3.7) 中, α\alpha 的取值都与 x1x_{1} 的符号有关. 但在某些应用中, 我们需要确保 α\alpha 非负, 此时我们可以将这两种方法结合起来使用, 即:

v1={x1α,i f s i g n(x1)<0(x22+x32++xn2)x1+α,o t h e r w i s ev _ {1} = \left\{ \begin{array}{l l} x _ {1} - \alpha , & \text {i f s i g n} (x _ {1}) < 0 \\ \frac {- (x _ {2} ^ {2} + x _ {3} ^ {2} + \cdots + x _ {n} ^ {2})}{x _ {1} + \alpha}, & \text {o t h e r w i s e} \end{array} \right.

无论怎样选取 α\alpha ,我们都有 H=IβvvH = I - \beta vv^{*} ,其中

β=2vv=2(x1α)2+x22++xn2=22α22αx1=1αv1.\beta = \frac {2}{v ^ {*} v} = \frac {2}{(x _ {1} - \alpha) ^ {2} + x _ {2} ^ {2} + \cdots + x _ {n} ^ {2}} = \frac {2}{2 \alpha^ {2} - 2 \alpha x _ {1}} = - \frac {1}{\alpha v _ {1}}.

思考:如果 xx 是复向量,有没有相应的结论?

在实数域中计算Householder向量 vv 的算法如下, 总运算量大约为 2n2n , 如果加上赋值运算的话则为 3n3n .

算法3.1.计算Householder向量

%\% Given xRnx \in \mathbb{R}^n , compute vRnv \in \mathbb{R}^n such that Hx=x2e1Hx = \| x\|_2 e_1 , where H=IβvvH = I - \beta vv^* (House.m)

1: function [β,v]=House(x)[\beta, v] = \mathbf{House}(x)
2: n=length(x)n = \text{length}(x) (here length(x)\text{length}(x) denotes the dimension of xx )
3: compute σ=x22+x32++xn2\sigma = x_2^2 +x_3^2 +\dots +x_n^2 and let v=xv = x
4: if σ=0\sigma = 0 and x1>=0x_{1} > = 0 then
5: β=0\beta = 0 %v1=0\% v_{1} = 0
6: else if σ=0\sigma = 0 and x1<0x_{1} < 0 then
7: v1=2x1,β=2/v12v_{1} = 2x_{1},\beta = 2 / v_{1}^{2}
8: else
9: α=x12+σ%α=x2\alpha = \sqrt{x_1^2 + \sigma} \quad \% \alpha = \| x\|_2
10: if x1<=0x_{1} < = 0 then
11: v1=x1αv_{1} = x_{1} - \alpha
12: else
13: v1=σ/(x1+α)v_{1} = -\sigma /(x_{1} + \alpha)
14: end if
15: β=2/(v12+σ)\beta = 2 / (v_1^2 +\sigma)
16: end if

可以证明,上述算法具有很好的数值稳定性[135],即

H~H2=O(εu),\| \tilde {H} - H \| _ {2} = \mathcal {O} (\varepsilon_ {u}),

其中 H~\tilde{H} 是由上述算法计算得到的近似矩阵, εu\varepsilon_{u} 是机器精度.

在实际计算时, 我们可以将向量 vv 单位化, 使得 v1=1v_{1} = 1 . 这样, 我们就无需为 vv 另外分配空间, 而是将 v(2:n)v(2:n) 存放在 x(2:n)x(2:n) 中, 因为经过 Householder 变换后, 向量 xx 除第一个分量外, 其它都为零.

思考: 这里要求 v10v_{1} \neq 0 , 那么什么情况下 v1=0v_{1} = 0 ?

为了避免可能产生的溢出, 我们也可以事先将 xx 单位化, 即令 x=x/x2x = x / \| x\| _2

Householder 变换与矩阵的乘积

ARm×n,H=IβvvRm×mA\in \mathbb{R}^{m\times n},H = I - \beta vv^{*}\in \mathbb{R}^{m\times m} ,则

HA=(Iβvv)A=Aβv(vA).H A = (I - \beta v v ^ {*}) A = A - \beta v (v ^ {*} A).

因此, 在做 Householder 变换时, 并不需要生成 Householder 矩阵, 只需要 Householder 向量即可. 上面矩阵相乘的总运算量大约为 4mn4mn .

注记

  • Householder 矩阵早在 1932 年就出现了 [128], 但直到 1958 年才由 Householder 用于矩阵的三角化 [75].

  • 关于其他类型的 Householder 变换 (包括复数情形), 可以参见 [36].

3.2.4 Givens变换

为简单起见, 我们这里这讨论实数域中的 Givens 变换. 设 θ[0,2π]\theta \in [0,2\pi] , 我们称矩阵

G(i,j,θ)=[1cssc1]Rn×n,(ij)G (i, j, \theta) = \left[ \begin{array}{c c c c c c} 1 & & & & & \\ & \ddots & & & & \\ & & c & \dots & s & \\ & & \vdots & \ddots & \vdots & \\ & & - s & \dots & c & \\ & & & & \ddots & \\ & & & & & 1 \end{array} \right] \in \mathbb {R} ^ {n \times n}, \qquad (i \leq j)

为Givens变换(或Givens旋转,或Givens矩阵),其中 c=cos(θ)c = \cos (\theta)s=sin(θ)s = \sin (\theta) .也就是说,将单位矩阵的 (i,i)(i,i)(j,j)(j,j) 位置上的元素用 cc 代替,而 (i,j)(i,j)(j,i)(j,i) 位置上的元素分别用 sss-s 代替,所得到的矩阵就是 G(i,j,θ)G(i,j,\theta)

定理3.6 G(i,j,θ)G(i,j,\theta) 是正交矩阵,且 det(G(i,j,θ))=1\operatorname{det}(G(i,j,\theta)) = 1

Givens 变换不是初等矩阵变换, 事实上, 它是单位矩阵的一个秩 2 修正, 即

G(i,j,θ)=I+[ei,ej][c1ssc1][ei,ej]T.G (i, j, \theta) = I + [ e _ {i}, e _ {j} ] \left[ \begin{array}{c c} c - 1 & s \\ - s & c - 1 \end{array} \right] [ e _ {i}, e _ {j} ] ^ {\mathsf {T}}.

如果是定义在复数域上的Givens变换,则 c=eiαcosθ,s=eiβsinθ,0α,β,θ<2π.c = e^{\mathrm{i}\alpha}\cos \theta ,s = e^{\mathrm{i}\beta}\sin \theta ,0\leq \alpha ,\beta ,\theta < 2\pi .

例3.1 设 x=[x1x2]R2x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 , 则存在一个Givens变换 G=[cssc]R2×2G = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \in \mathbb{R}^{2 \times 2} 使得 Gx=[r0]Gx = \begin{bmatrix} r \\ 0 \end{bmatrix} , 其中 c,sc, srr 的值如下:

c=x1r,s=x2r,r=x12+x22,G=1r[x1x2x2x1].c = {\frac {x _ {1}}{r}}, \quad s = {\frac {x _ {2}}{r}}, \quad r = {\sqrt {x _ {1} ^ {2} + x _ {2} ^ {2}}}, \quad \text {即} \quad G = {\frac {1}{r}} {\left[ \begin{array}{l l} {{x _ {1}}} & {{x _ {2}}} \\ {{- x _ {2}}} & {{x _ {1}}} \end{array} \right]}.

也就是说, 通过Givens变换, 我们可以将向量 xR2x \in \mathbb{R}^2 的第二个分量化为0.

事实上, 对任意一个向量 xRnx \in \mathbb{R}^n , 都可以通过Givens变换将其任意一个位置上的分量化为0. 更进一步, 我们也可以通过若干个Givens变换, 将 xx 中除第一个分量外的所有元素都化为0.

算法3.2.Givens变换

%\% Given x=[x1,x2]TR2x = [x_1, x_2]^{\mathsf{T}} \in \mathbb{R}^2 , compute cc and ss such that Gx=[r,0]TGx = [r, 0]^{\mathsf{T}} where r=x2r = \|x\|_2 (Givens.m)
1: function [c,s]=givens(x1,x2)[c, s] = \text{givens}(x_1, x_2)
2: if x2=0x_{2} = 0 then
3: c=sign(x1),s=0c = \operatorname{sign}(x_1),\quad s = 0
4: else
5: if x2>x1|x_2| > |x_1| then
6: τ=x1x2,s=sign(x2)1+τ2,c=sτ\tau = \frac{x_1}{x_2},\quad s = \frac{\mathrm{sign}(x_2)}{\sqrt{1 + \tau^2}},\quad c = s\tau
7: else
8: τ=x2x1,c=sign(x1)1+τ2,s=cτ\tau = \frac{x_2}{x_1},\quad c = \frac{\operatorname{sign}(x_1)}{\sqrt{1 + \tau^2}},\quad s = c\tau
9: end if

10: end if

例3.2 (Givens变换的几何意义)

x=[x1x2]=[rcosαrsinα]R2x = \left[ \begin{array}{l} x_{1} \\ x_{2} \end{array} \right] = \left[ \begin{array}{l} r \cos \alpha \\ r \sin \alpha \end{array} \right] \in \mathbb{R}^{2} , 其中 r=x12+x22,α=arctanx2x1r = \sqrt{x_1^2 + x_2^2}, \alpha = \arctan \frac{x_2}{x_1} , 则

GTx=[cosθsinθsinθcosθ]T[rcosαrsinα]=[r(cosθcosαsinθsinα)r(sinθcosα+cosθsinα)]=[rcos(α+θ)rsin(α+θ)],G ^ {\mathsf {T}} x = \left[ \begin{array}{c c} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta \end{array} \right] ^ {\mathsf {T}} \left[ \begin{array}{c} r \cos \alpha \\ r \sin \alpha \end{array} \right] = \left[ \begin{array}{c} r (\cos \theta \cos \alpha - \sin \theta \sin \alpha) \\ r (\sin \theta \cos \alpha + \cos \theta \sin \alpha) \end{array} \right] = \left[ \begin{array}{c} r \cos (\alpha + \theta) \\ r \sin (\alpha + \theta) \end{array} \right],

也就是说, GTxG^{\mathsf{T}}x 相当于将向量 xx 按逆时针旋转 θ\theta 角度. 因此当 θ=α\theta = -\alpha 时, Gx=[r0]Gx = \begin{bmatrix} r \\ 0 \end{bmatrix} .

Givens变换与矩阵的乘积

ARm×nA \in \mathbb{R}^{m \times n} , G=G(i,j,θ)RmG = G(i, j, \theta) \in \mathbb{R}^m , 则 GAG^\top A 只会影响其第 ii 行和第 jj 行的元素, 也就是说, 只需对 AA 的第 ii 行和第 jj 行做 Givens 变换即可, 运算量大约为 6n6n .

同样地, 如果是右乘Givens变换, 则只会影响其第 ii 列和第 jj 列的元素, 运算量约为 6m6m .

任何一个正交矩阵都可以写成若干个Householder矩阵或Givens矩阵的乘积(见习题3.5和3.23),所以正交矩阵所对应的线性变换可以看作是反射变换和旋转变换的推广,因此它不会改变向量的长度与(不同向量之间的)角度。

3.2.5 正交变换的舍入误差分析

引理3.7设 PRn×nP\in \mathbb{R}^{n\times n} 是一个精确的Householder或Givens变换, P~\tilde{P} 是其浮点运算近似, 则

fl(P~A)=P(A+E),fl(AP~)=(A+F)P,\operatorname {f l} (\tilde {P} A) = P (A + E), \quad \operatorname {f l} (A \tilde {P}) = (A + F) P,

其中 E2=O(εu)A2,F2=O(εu)A2.\| E\| _2 = \mathcal{O}(\varepsilon_u)\cdot \| A\| _2,\| F\| _2 = \mathcal{O}(\varepsilon_u)\cdot \| A\| _2.

这说明对一个矩阵做Householder变换或Givens变换是向后稳定的.

定理3.8 考虑对矩阵 AA 做一系列的正交变换, 则有

fl(P~kP~1AQ~1Q~k)=PkP1(A+E)Q1Qk,\mathrm {f l} \left(\tilde {P} _ {k} \dots \tilde {P} _ {1} A \tilde {Q} _ {1} \dots \tilde {Q} _ {k}\right) = P _ {k} \dots P _ {1} (A + E) Q _ {1} \dots Q _ {k},

其中 E2=O(εu)(kA2)\| E\| _2 = \mathcal{O}(\varepsilon_u)\cdot (k\| A\| _2) .这说明整个计算过程是向后稳定的.

一般地, 假设 XX 是一个非奇异的线性变换, X~\tilde{X} 是其浮点运算近似. 当 XX 作用到 AA 上时, 有

fl(X~A)=XA+E=X(A+X1E)X(A+F),\operatorname {f l} (\tilde {X} A) = X A + E = X (A + X ^ {- 1} E) \triangleq X (A + F),

其中 E2=O(εu)XA2O(εu)X2A2\| E\| _2 = \mathcal{O}(\varepsilon_u)\| X A\| _2\leq \mathcal{O}(\varepsilon_u)\| X\| _2\| A\| _2 ,故

F2=X1E2O(εu)X12X2A2=O(εu)κ2(X)A2.\| F \| _ {2} = \| X ^ {- 1} E \| _ {2} \leq \mathcal {O} (\varepsilon_ {u}) \| X ^ {- 1} \| _ {2} \| X \| _ {2} \| A \| _ {2} = \mathcal {O} (\varepsilon_ {u}) \kappa_ {2} (X) \| A \| _ {2}.

因此, 舍入误差可能会放大 κ2(X)\kappa_{2}(X) 倍. 当 XX 是正交变换时, κ2(X)\kappa_{2}(X) 达到最小值 1 , 这就是为什么在浮点运算中尽量使用正交变换的原因.

3.2_几类重要的矩阵变换 - 矩阵计算讲义 | OpenTech