矩阵秩的基本性质 性质1:初等变换不改变矩阵的秩
性质2:矩阵的行秩等于矩阵的列秩等于矩阵的秩
定理 若 A A A 与B B B 等价 ,则 R ( A ) = R ( B ) R( A )=R( B ) R ( A ) = R ( B ) .
证明:已知矩阵的初等行变换不改变知阵的秩.对矩阵 A A A 实施初等列变换变为矩阵 B B B ,相当于对矩阵 A T A ^{ T } A T 实施初等行变换变为矩阵 B T B ^{ T } B T ,又知 R ( A ) = R ( A T ) , R ( B ) = R ( B T ) R( A )=R\left( A ^{ T }\right), R( B )=R\left( B ^{ T }\right) R ( A ) = R ( A T ) , R ( B ) = R ( B T ) ,所以对矩阵 A A A 实施初等列变换变为矩阵 B B B ,仍旧有 R ( A ) = R ( B ) R( A )=R( B ) R ( A ) = R ( B ) .
因此,若 A ∼ B A \sim B A ∼ B ,则 R ( A ) = R ( B ) R( A )=R( B ) R ( A ) = R ( B ) .
例 求矩阵 A = ( 3 0 − 2 − 1 3 1 − 1 3 2 0 1 0 1 − 1 1 2 − 2 1 6 0 ) A=\left(\begin{array}{ccccc}3 & 0 & -2 & -1 & 3 \\ 1 & -1 & 3 & 2 & 0 \\ 1 & 0 & 1 & -1 & 1 \\ 2 & -2 & 1 & 6 & 0\end{array}\right) A = 3 1 1 2 0 − 1 0 − 2 − 2 3 1 1 − 1 2 − 1 6 3 0 1 0 的秩.
解:
A = ( 3 0 − 2 − 1 3 1 − 1 3 2 0 1 0 1 − 1 1 2 − 2 1 6 0 ) → ( 1 0 1 − 1 1 1 − 1 3 2 0 3 0 − 2 − 1 3 2 − 2 1 6 0 ) → ( 1 0 1 − 1 1 0 − 1 2 3 − 1 0 0 − 5 2 0 0 − 2 − 1 8 − 2 ) → ( 1 0 1 − 1 1 0 − 1 2 3 − 1 0 0 − 5 2 0 0 0 0 0 0 ) , A =\left(\begin{array}{ccccc}
3 & 0 & -2 & -1 & 3 \\
1 & -1 & 3 & 2 & 0 \\
1 & 0 & 1 & -1 & 1 \\
2 & -2 & 1 & 6 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 0 & 1 & -1 & 1 \\
1 & -1 & 3 & 2 & 0 \\
3 & 0 & -2 & -1 & 3 \\
2 & -2 & 1 & 6 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 0 & 1 & -1 & 1 \\
0 & -1 & 2 & 3 & -1 \\
0 & 0 & -5 & 2 & 0 \\
0 & -2 & -1 & 8 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 0 & 1 & -1 & 1 \\
0 & -1 & 2 & 3 & -1 \\
0 & 0 & -5 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), A = 3 1 1 2 0 − 1 0 − 2 − 2 3 1 1 − 1 2 − 1 6 3 0 1 0 → 1 1 3 2 0 − 1 0 − 2 1 3 − 2 1 − 1 2 − 1 6 1 0 3 0 → 1 0 0 0 0 − 1 0 − 2 1 2 − 5 − 1 − 1 3 2 8 1 − 1 0 − 2 → 1 0 0 0 0 − 1 0 0 1 2 − 5 0 − 1 3 2 0 1 − 1 0 0 , 所以 A A A 的秩 R ( A ) = 3 R( A )=3 R ( A ) = 3 .
矩阵秩的求法:拿到矩阵后,做初等行变换,化为阶梯形矩阵,最后数一下阶梯是几行,他的秩就是几。
矩阵秩的性质总结 1.设 A A A 是 m × n m \times n m × n 矩阵。矩阵 A A A 中任取 r r r 行和 r r r 列。元素按照原来次序排列构成的 r r r 阶行列式。称为矩阵A的 r r r 阶子式。矩阵 A A A 共有 C m r C n r C_m^r C_n^r C m r C n r 个r r r 阶子式。若 A A A 至少有一个r r r 阶子式不为 0 。但所有的 r + 1 r+1 r + 1 阶子式皆为 0 ,则称 r r r 为矩阵 A A A 的秩,记为 r ( A ) = r r(A)=r r ( A ) = r 。
A → m × n A \rightarrow m \times n A → m × n 矩阵 r ( A ) ⩽ m . r ( A ) ⩽ n \quad r(A) \leqslant m . \quad r(A) \leqslant n r ( A ) ⩽ m . r ( A ) ⩽ n .
即 r ( A ) ⩽ min { m , n } r(A) \leqslant \min \{m, n\} r ( A ) ⩽ min { m , n } 。
①满阶矩阵。设 A A A 为 n n n 阶矩阵。若 ∣ A ∣ ≠ 0. r ( A ) = n |A| \neq 0 . \quad r(A)=n ∣ A ∣ = 0. r ( A ) = n .
②降阶矩阵.若 ( A ) = 0. r ( A ) < n (A)=0 . \quad r(A)<n ( A ) = 0. r ( A ) < n .
③设 α = ( a 1 a 2 ⋮ a n ) \alpha=\left(\begin{array}{c}a_1 \\ a_2 \\ \vdots \\ a_n\end{array}\right) α = a 1 a 2 ⋮ a n 则 r ( α ) ⩽ 1 r(\alpha) \leqslant 1 r ( α ) ⩽ 1
若 α = 0. r ( α ) = 0 \alpha=0 . \quad r(\alpha)=0 α = 0. r ( α ) = 0
若 α ≠ 0. r ( α ) = 1 \alpha \neq 0 . \quad r(\alpha)=1 α = 0. r ( α ) = 1 .
A = ( 1 1 1 − 1 3 1 2 1 1 2 3 0 4 ) → r 3 − 2 r 1 r 2 − r 1 ( 1 1 − 1 3 0 1 2 − 2 0 1 2 − 2 ) = ( 1 1 − 1 3 0 1 2 − 2 0 0 0 0 ) A=\left(\begin{array}{ccccc}
1 & 1 & 1 & -1 & 3 \\
1 & 2 & 1 & 1 \\
2 & 3 & 0 & 4
\end{array}\right) \xrightarrow[r_3-2 r_1]{\substack{r_2-r_1}}\left(\begin{array}{cccc}
1 & 1 & -1 & 3 \\
0 & 1 & 2 & -2 \\
0 & 1 & 2 & -2
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & -1 & 3 \\
0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0
\end{array}\right) A = 1 1 2 1 2 3 1 1 0 − 1 1 4 3 r 2 − r 1 r 3 − 2 r 1 1 0 0 1 1 1 − 1 2 2 3 − 2 − 2 = 1 0 0 1 1 0 − 1 2 0 3 − 2 0 注:①矩阵秩的本质为方程组约束条件的个数
②r ( A ) = 0 ⟺ A = 0 r(A)=0 \Longleftrightarrow A=0 r ( A ) = 0 ⟺ A = 0
③r ( A ) ⩾ 1 ⇔ A ≠ 0 r(A) \geqslant 1 \Leftrightarrow A \neq 0 r ( A ) ⩾ 1 ⇔ A = 0
④r ( A ) ⩾ 2 ⇔ A r(A) \geqslant 2 \Leftrightarrow A r ( A ) ⩾ 2 ⇔ A 至少两行不成比例。
性质:
(1)r ( A ) = r ( A ⊤ ) = r ( A ⊤ A ) = r ( A A ⊤ ) r(A)=r\left(A^{\top}\right)=r\left(A^{\top} A\right)=r\left(A A^{\top}\right) r ( A ) = r ( A ⊤ ) = r ( A ⊤ A ) = r ( A A ⊤ )
(2)设 A A A .B B B 为同型矩阵 γ ( A ± B ) ≤ γ ( A ) + γ ( B ) \gamma(A \pm B) \leq \gamma(A)+\gamma(B) γ ( A ± B ) ≤ γ ( A ) + γ ( B )
A + B . A − B A+B . A-B A + B . A − B 或 r ( A ) + r ( B ) r(A)+r(B) r ( A ) + r ( B )
(3)设 A A A m × n m \times n m × n 矩阵 B B B 为 n × s n \times s n × s 矩阵.r ( A B ) ≤ min { r ( A ) ⋅ r ( B ) } r(A B) \leq \min \{r(A) \cdot r(B)\} r ( A B ) ≤ min { r ( A ) ⋅ r ( B )} 或者 { r ( A B ) ⩽ r ( A ) r ( A B ) ⩽ r ( B ) \left\{\begin{array}{l}r(A B) \leqslant r(A) \\ r(A B) \leqslant r(B)\end{array}\right. { r ( A B ) ⩽ r ( A ) r ( A B ) ⩽ r ( B )
(4)设 A A A 为 m × n m \times n m × n 矩阵.B B B 为 n × s n \times s n × s 矩阵.且 A B = 0 A B=0 A B = 0 。
r ( A ) + r ( B ) ⩽ n A B = 0 \begin{gathered}
r(A)+r(B) \leqslant n \\
A B=0
\end{gathered} r ( A ) + r ( B ) ⩽ n A B = 0 (5)设 A A A 为 m × n m \times n m × n 矩阵.P ⋅ Q P \cdot Q P ⋅ Q 分别为 m m m 及 n n n 阶可逆矩阵.则。
r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) r(A)=r(P A)=r(A Q)=r(P A Q) r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) (6)没 A A A 是 n n n 阶矩阵.则 r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 ( n ⩾ 2 ) 0 , r ( A ) < n − 1 r\left(A^*\right)= \begin{cases}n, & r(A)=n \\ 1, & r(A)=n-1 \quad(n \geqslant 2) \\ 0, & r(A)<n-1\end{cases} r ( A ∗ ) = ⎩ ⎨ ⎧ n , 1 , 0 , r ( A ) = n r ( A ) = n − 1 ( n ⩾ 2 ) r ( A ) < n − 1
(7)①设 A , B A, B A , B 为别为 m × n , n × s m \times n, n \times s m × n , n × s 矩阵.则.
max { r ( A ) ⋅ r ( B ) } ≤ r ( A B ) ≤ r ( A ) + r ( B ) \max \{r(A) \cdot r(B)\} \leq r\binom{A}{B} \leq r(A)+r(B) max { r ( A ) ⋅ r ( B )} ≤ r ( B A ) ≤ r ( A ) + r ( B ) 或设 A A A .B B B 分制为 m × n . m × s m \times n . m \times s m × n . m × s 矩阵。则
max { r ( A ) ⋅ r ( B ) } ⩽ r ( A ⋮ B ) ⩽ r ( A ) + r ( B ) \max \{r (A) \cdot r(B)\} \leqslant r(A \vdots B) \leqslant r(A)+r(B) max { r ( A ) ⋅ r ( B )} ⩽ r ( A ⋮ B ) ⩽ r ( A ) + r ( B ) ②
r ( A 0 0 B ) = r ( A ) + r ( B ) r\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)=r(A)+r(B) r ( A 0 0 B ) = r ( A ) + r ( B ) (8)设 A A A 为 n n n 所非雪矩阵.则 r ( A ) = 1 r(A)=1 r ( A ) = 1 的充分必要杂件是存在非零何量 α \alpha α .β \beta β .使得 A = α β T A=\alpha \beta T A = α βT