7.6_课后习题

7.6 课后习题

练习7.1 证明引理7.1,即

Km=span{v1,v2,,vm}.\mathcal {K} _ {m} = \operatorname {s p a n} \left\{v _ {1}, v _ {2}, \dots , v _ {m} \right\}.

(提示: 用归纳法证明 vkKk,k=1,2,,mv_{k} \in \mathcal{K}_{k}, k = 1,2,\ldots,m 即可)

练习7.2 证明定理7.3, 即由Lanczos过程生成的向量是相互正交的.

练习7.3 证明定理7.5中的必要性

练习7.4 设 Hm+1,mH_{m+1,m} 不可约, 试证明 (7.8) 中的 RmR_m 非奇异

练习7.5 设 ARn×nA \in \mathbb{R}^{n \times n} 对称正定, 非零向量 p1,p2,,pmp_1, p_2, \ldots, p_mAA -共轭的, 即当 iji \neq j 时有 piApj=0p_i^\top A p_j = 0 . 试证明: p1,p2,,pmp_1, p_2, \ldots, p_m 线性无关.

练习7.6 用右预处理方式推导PCG算法

练习7.7 设 ARn×nA \in \mathbb{R}^{n \times n} 可对角化且特征值都是实数, 试证明: 存在某内积 (,)(\cdot, \cdot) , 使得在此内积下 AA 是自伴随的.

以下为实践题

练习7.8 编程实现GMRES方法

练习7.9 编程实现CG算法

参考文献

[1] J.O. Aasen, On the reduction of a symmetric matrix to tridiagonal form, BIT, 11 (1971), 233-242. 53
[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK Users' Guide, 3rd Edition, SIAM, Philadelphia, 1999. https://netlib.org/lapack/lug/ 162
[3] M. Arioli, V. Pták, and Z. Strakoš, Krylov sequences of maximal length and convergence of GMRES, BIT, 38 (1998), 636-643. 233
[4] C. Ashcraft, R.G. Grimes and J.G. Lewis, Accurate symmetric indefinite linear equation solvers, SIAM Journal on Matrix Analysis and Applications, 20 (1998), 513-561. 52, 53
[5] J.L. Aurentz, T. Mach, R. Vandebril and D.S. Watkins, Fast and backward stable computation of roots of polynomials, SIAM Journal on Matrix Analysis and Applications, 36 (2015), 942–973. 137, 138
[6] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994. 173, 174, 187, 230
[7] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000. 114
[8] Z.-Z. Bai, G.H. Golub and M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM Journal on Matrix Analysis and Applications, 24 (2003), 603-626. 208, 209
[9] M. Van Barel, G. Heinig and P. Kravanja, A stabilized superfast solver for nonsymmetric toeplitz systems, SIAM Journal on Matrix Analysis and Applications, 23 (2001), 494-510. FORTRAN code http://people.cs.kuleuven.be/~marc.vanbarel/software/
[10] V. Bargmann, C. Montgomery and J. von Neumann, Solution of Linear Systems of High Order, Princeton, N.J.: Institute for Advanced Study, 1946.
[11] R. Barrett, et.al, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994. (http://www.netlib.org/templates/index.html) 174
[12] V. Barwell and A. George, A comparison of algorithms for solving symmetric indefinite systems of linear equations, ACM Transactions on Mathematical Software, 2 (1976), 242-251. 53
[13] M. Benzi, Preconditioning techniques for large linear systems: A survey, Journal of Computational Physics, 182 (2002), 418-477. 173, 235
[14] D.A. Bini, P. Boito, Y. Eidelman, L. Gemignani and I. Gohberg, A fast implicit QR eigenvalue algorithm for companion matrices, Linear Algebra and its Applications, 432 (2010), 2006-2031. 137, 138
[15] Åke Björck, Solving linear least square problems by Gram-Schmidt orthogonalization, BIT, 7 (1967), 1-21. 92
[16] Åke Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996. 73, 91
[17] V. Britanak, P. Yip and K. Rao, Discrete Cosine and Sine Transforms: General properties, Fast algorithms and Integer Approximations, Academic Press, 2007. 199
[18] N.I. Buleev, A numerical method for solving two-dimensional diffusion equations, Atomic Energy, 6 (1959), 338. (in Russian) 243
[19] N.I. Buleev, A numerical method for solving two- and three-dimensional diffusion equations, Mathematical Collection, 51 (1960), 227–238. (in Russian) 243
[20] J.R. Bunch, Analysis of the diagonal pivoting method, SIAM Journal on Numerical Analysis, 8 (1971), 656-680. 52
[21] J.R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Mathematics of Computation, 31 (1977), 163-179. 52

[22] J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric indefinite systems of linear equations, SIAM Journal on Numerical Analysis, 8 (1971), 639-655. 52
[23] R. P. Brent, Stability of fast algorithms for structured linear systems, http://arxiv.org/pdf/1005.0671v1.pdf, 2010.
[24] S. Chandrasekaran, M. Gu, J. Xia and J. Zhu, A fast QR algorithm for companion matrices, In: J. A. Ball, Y. Eidelman, J.W. Helton, V. Olshevsky, J. Rovnyak (eds) Recent Advances in Matrix and Operator Theory, 111-143, 2007. Operator Theory: Advances and Applications book series, vol 179, 137, 138
[25] S. H. Cheng, Symmetric Indefinite Matrices: Linear System Solvers and Modified Inertia Problems, Ph.D. thesis, University of Manchester, 1998. 52
[26] G. Codevico, G. Heinig and M. Van Barel, A superfast solver for real symmetric Toeplitz systems using real trigonometric transformations, Numer. Linear Algebra Appl., 12 (2005), 699-713. MATLAB code http://people.cs.kuleuven.be/~marc.vanbarel/software/
[27] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Computation, 9 (1990), 251-280.
[28] J.J.M. Cuppen, A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem, Numerische Mathematik, 36 (1981), 177-195. 149, 152
[29] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006. 38
[30] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997. 38, 144, 156, 173, 184, 187, 213
[31] J. J. Dongarra, I. S. Duff, D. C. Sorensen and H. A. van der Vorst, Numerical Linear Algebra for High-Performance Computers, SIAM, Philadelphia, PA, 1998. 52
[32] J.J. Dongarra and V. Eijkhout, Numerical linear algebra algorithms and software, Journal of Computational and Applied Mathematics, 123 (2000), 489-514. 38
[33] J.J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, I. Yamazaki, The singular value decomposition: Anatomy of optimizing an algorithm for extreme scale, SIAM Review, 60 (2018), 808-865. 157, 159
[34] Z. Drmac and K. Veselic, New fast and accurate jacobi SVD algorithm. I SIAM Journal on Matrix Analysis and Applications, 29 (2008), 1322-1342. 160, 163
[35] Z. Drmac and K. Veselic, New fast and accurate jacobi SVD algorithm. II SIAM Journal on Matrix Analysis and Applications, 29 (2008), 1343-1362. 160, 163
[36] A. A. Dubrulle, Householder Transformations Revisited, SIAM Journal on Matrix Analysis and Applications, 22 (2000), 33-40. 79
[37] J. Durbin, The fitting of time-series models, Review of the International Statistical Institute, 28 (1960), 233-243. https://doi.org/10.2307/1401322 58
[38] I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, 2nd edition, Oxford, 2017. 38, 68
[39] I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott and K. Turner, The factorization of sparse symmetric indefinite matrices, IMA Journal of Numerical Analysis, 11 (1991), 181–204. 53
[40] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Transactions on Mathematical Software, 9 (1983), 302-325. 53
[41] M. Engeli, Th. Ginsburg, H. Rutishauser and E. Stiefel, Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, Birkhäuser, Basel/Stuttgart, 1959. 174
[42] D. J. Evans, The use of pre-conditioning in iterative methods for solving linear systems with symmetric positive definite matrices, Journal of the Institute of Mathematics and Applications, 4 (1968), 295-314. 235
[43] V. Faber, W. Joubert, E. Knill and T. Manteuffel, Minimal residual method stronger than polynomial

preconditioning, SIAM Journal on Matrix Analysis and Applications, 17 (1996), 707-729. 234
[44] K. Fernando and B. Parlett, Accurate singular values and differential qd algorithms, Numerische Mathematik, 67 (1994), 191-229. 159, 162
[45] B. Fischer, Polynomial based iteration methods for symmetric linear systems, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons Ltd., Chichester, 1996. 232
[46] J. G. F. Francis, The QR transformation: A unitary analogue to the LR transformation — Part 1, The Computer Journal, 4 (1961) 265–271. https://doi.org/10.1093/comjnl/4.3.265
[47] J. G. F. Francis, The QR transformation — Part II, The Computer Journal, 4 (1962) 332–345. https://doi.org/10.1093/comjnl/4.4.332
[48] R. Freund and N. M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numerische Mathematik, 60 (1991), 315-339. 174
[49] N. Gastinel, Linear Numerical Analysis, Kershaw Publishing, London, 1083. 63
[50] J. F. Grcar, Mathematicians of Gaussian Elimination, Notices of the AMS, 58 (2011), 782-792. 38
[51] A. George and J. W-H Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981. 51
[52] G. H. Golub, History of numerical linear algebra: A personal view, Stanford, 2007. Available at http://forum.stanford.edu/events/2007slides/plenary/history-revised-2007-03-19-golub.pdf 3
[53] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM Journal on Numerical Analysis, Series B, 2 (1965), 205-224. 159
[54] G. H. Golub and C. Reinsch, Singular value decomposition and least squares solution, Numerische Mathematik, 14 (1970), 403-420. 159
[55] G. H. Golub and D. P. O' Leary, Some history of the conjugate gradient and Lanczos methods: 1948-1976, SIAM Review, 31 (1989), 50-102. 173
[56] G. H. Golub and H. A. van der Vorst, Eigenvalue computation in the 20th century, Journal of Computational and Applied Mathematics, 123 (2000), 35-65. 114
[57] G. H. Golub and C. F. Van Loan, Matrix Computations, The 4th Edition, The Johns Hopkins University Press, Baltimore, MD, 2013. 29, 38, 40, 76, 89, 92, 94, 95, 112, 113, 114, 148, 159, 160, 173, 174, 213
[58] J. P. Gram, Ueber die Entwicklung reeller Functionen in Reihen mittelst der Methode der kleinsten Quadrate, Journal für die Reine und Angewandte Mathematik, (94) 1883, 41-73. 232, 234
[59] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, 1997. 213
[60] A. Greenbaum and L. Gurvits, Max-min properties of matrix factor norms, SIAM Journal on Scientific Computing, 15 (1994), 348-358. 232, 234
[61] A. Greenbaum, V. Pták and Z. Strakos, Any nonincreasing convergence curve is possible for GMRES, SIAM Journal on Matrix Analysis and Applications, 17 (1996), 465-469. 233
[62] A. Greenbaum and Z. Strakos, Matrices that generate the same Krylov residual spaces, in Recent Advances in Iterative Methods, vol. 60 of IMA Vol. Math. Appl., Springer, New York, 1994, pp. 95-118. 233
[63] J. F. Grcar, Mathematicians of Gaussian Elimination, Notices of the AMS, 58 (2011), Number 6, 782-792. 38
[64] M. Gu and S. C. Eisenstat, A stable algorithm for the rank-1 modification of the symmetric eigenproblem, SIAM Journal on Matrix Analysis and Applications, 15 (1994), 1266–1276. 154
[65] M. Gu and S. C. Eisenstat, A Divide-and-Conquer algorithm for the bidiagonal SVD, SIAM Journal on Matrix Analysis and Applications, 16 (1995), 79-92. 154
[66] M. Gu and S. C. Eisenstat, A Divide-and-Conquer algorithm for the symmetric tridiagonal eigen-

problem, SIAM Journal on Matrix Analysis and Applications, 16 (1995), 172-191. 149, 154
[67] I. Gustafsson, A class of first order factorization methods, BIT, 18 (1978), 142-156. 243
[68] M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of research of the National Bureau of Standards, 49 (1952), 2379. 173
[69] N. J. Higham, Stability of the diagonal pivoting method with partial pivoting, SIAM Journal on Matrix Analysis and Applications, (18) 1997, 52-65. 52
[70] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Second Edition, SIAM, Philadelphia, 2002. 45, 52, 53, 65, 66, 67, 91, 106, 235
[71] N. J. Higham, Gaussian elimination, WIREs Computational Statistics, 3 (2011), 230-238.
[72] L. Hogben, Handbook of Linear Algebra, 2nd, CRC Press, 2014.
[73] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985. 2nd edition, 2013. 5, 8, 20, 28, 83, 94, 164, 166
[74] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991. 5, 98, 99, 164
[75] A. S. Householder, Unitary triangularization of a nonsymmetric matrix, Journal of the ACM, 5 (1958), 339-342. 79
[76] A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964. 173
[77] V. P. Il'in, Iterative Incomplete Factorization Methods, World Scientific, Singapore, 1992. 243
[78] C. G. J. Jacobi, Concerning an easy process for solving equations occurring in the theory of secular disturbances, Journal für die reine und angewandte mathematik, 30 (1846), 51-94.
[79] W. Joubert, A robust GMRES-based adaptive polynomial preconditioning algorithm for nonsymmetric linear systems, SIAM Journal on Scientific Computing, 15 (1994), 427-439. 232, 234
[80] W. Kahan Numerical Linear Algebra, Canadian mathematical bulletin, 9 (1966), 757-801. 63
[81] T. Kailath and A. H. Sayed, Fast Reliable Algorithms for Matrices with Structure, SIAM, Philadelphia, 1999. 58, 59
[82] P. A. Knight, D. Ruiz and B. Ucar A symmetry preserving algorithm for matrix scaling, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 931-955. 68
[83] D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems, Lecture Notes in Computational Sciences and Engineering 46, Springer-Verlag, 2005. 136
[84] V. N. Kublanovskaya On some algorithms for the solution of the complete eigenvalue problem, USSR Computational Mathematics and Mathematical Physics, 3 (1961), 637-657.
[85] C. Lanczos Solutions of systems of linear equations by minimized iterations, Journal of research of the National Bureau of Standards, 49 (1952), 2341. 173
[86] F. Le Gall, Powers of tensors and fast matrix multiplication, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC 2014), http://arxiv.org/abs/1401.7714
[87] R. Lehoucq, Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration, Ph.D. thesis, Rice University, Houston, TX, 1995.
[88] S. J. Leon, Å. Björck and W. Gander, Gram-Schmidt orthogonalization: 100 years and more, Numerical Linear Algebra with Applications, 20 (2013), 492-532. https://doi.org/10.1002/nla.183992
[89] N. Levinson, The Wiener RMS (root mean square) error criterion in filter design and prediction, Journal of Mathematical Physics, 25 (1946), 261-278. https://doi.org/10.1002/sapm1946251261 58, 59
[90] S. Li, M. Gu and B. N. Parlett, An Improved DQDS Algorithm, SIAM Journal on Scientific Computing, 36 (2014), C290–C308. 162

[91] J. Liesen, Computable convergence bounds for GMRES, SIAM Journal on Matrix Analysis and Applications, 21 (2000), 882-903. 233
[92] J. Liesen and P. Tichy, Convergence analysis of Krylov subspace methods, GAMM-Mitteilungen, 27 (2004), 153-173. 233
[93] Joseph W. H. Liu, A partial pivoting strategy for sparse symmetric matrix decomposition, ACM Transactions on Mathematical Software, 13 (1987), 173-182. 53
[94] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric MM -matrix, Mathematics of Computation, 31 (1977), 148-162. 174, 243
[95] E. H. Moore, On the reciprocal of the general algebraic matrix, Bulletin of the American Mathematical Society, 26 (1920), 394-395. 103
[96] L. Neal and G. Poole, A geometric analysis of Gaussian elimination. II, Linear Algebra and its Applications, 173 (1992), 239-264. 52
[97] T. A. Oliphant, An extrapolation procedure for solving linear systems, Quarterly of Applied Mathematics, 20 (1962), 257-265. 243
[98] C. C. Paige, M. Rozlozník and Z. Strakos, Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 264-284. 86, 91
[99] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM Journal on Numerical Analysis, 12 (1975), 617-629. 174
[100] B. N. Parlett, The Symmetric Eigenvalue Problem, The 2nd Edition, SIAM, Philadelphia, PA, 1998. 114, 144, 146, 148
[101] B. N. Parlett, The QR algorithm, Computing in Science & Engineering, 2 (2000), 38-42.
[102] B. N. Parlett and O. Marques, An implementation of the dqds algorithm (positive case), Linear Algebra and its Applications, 309 (2000), 217-259. 162
[103] D. W. Peaceman and H. H. Rachford, Jr., The numerical solution of parabolic and elliptic differential equations, Journal of the Society for Industrial and Applied Mathematics, 3 (1955), 28-41. 207
[104] R. Penrose, A generalized inverse for matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413. 103
[105] A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Chapman & Hall/CRC, Taylor & Francis Group, 2007. 20
[106] J. K. Reid, On the method of conjugate gradients for the solution of large sparse systems of linear equations, in Large Sparse Sets of Linear Equations, edited by J. K. Reid, p. 231, Academic Press, New York, 1971. 174
[107] M. Rozlozník, G. Shklarski, S. Toledo, Partitioned triangular tridiagonalization, ACM Transactions on Mathematical Software, 37(4) (2011), No. 38. 53
[108] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Zeitschrift für angewandte Mathematik und Physik ZAMP, 5 (1954), 233–251. https://link.springer.com/article/10.1007/BF01600331
[109] H. Rutishauser, Solution of eigenvalue problems with the LR-transformation, NBS Applied Mathematics Series, 49 (1958), 47-81.
[110] J. Rutter, A Serial Implementation of Cuppen's Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem, Master's Thesis, University of California, 1994. 152
[111] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM Journal on Scientific & Statistical Computing, 7 (1986), 856-869. 174, 233
[112] Y. Saad, Numerical Methods for Large Eigenvalue Problems: Theory and Algorithms, Manchester University Press, Manchester, UK, 1992.

[113] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, 2003. 43, 213, 241, 243
[114] Y. Saad and H. A. van der Vorst, Iterative solution of linear systems in the 20th century, Journal of Computational and Applied Mathematics, 123 (2000), 1-33. 174
[115] E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener, Mathematische Annalen, 63 (1907), 433-476.
[116] E. Schmidt, Über die Auflösung linearer gleichungen mit unendlich vielen unbekannten, Rendiconti del Circolo Matematico di Palermo Series 1, 25 (1908), 53-77.
[117] J. Scott, Scaling and pivoting in an out-of-core sparse direct solver, ACM Transactions on Mathematical Software, 37 (2010), Issue 2, Article No. 19. 68
[118] D. Sorensen, Implicit application of polynomial filters in a kk -step Arnoldi method, SIAM Journal on Matrix Analysis and Applications, 13 (1992), 357-385.
[119] G. W. Stewart, Matrix Algorithms, Vol I: Basic Decomposition, SIAM, Philadelphia, PA, 1998. 97, 98, 99
[120] G. W. Stewart, Matrix Algorithms, Vol II: Eigensystems, SIAM, Philadelphia, PA, 2001. 114, 136
[121] M. Stewart, Fast algorithms for structured matrix computations, in Handbook of Linear Algebra, 2nd, section 62, CRC Press, 2014.
[122] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990. 65, 164
[123] A. Stothers, On the complexity of matrix multiplication, Ph.D. Thesis, U. Edinburgh, 2010.
[124] V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik, 13 (1969), 354-356.
[125] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997. 4, 38, 95, 213, 235, 241, 242
[126] L. N. Trefethen, Numerical Analysis, in Princeton Companion to Mathematics, Edited by T. Gowers, J. Barrow-Green and I. Leader, Princeton University Press, 2008. 3
[127] A. M. Turing, Rounding-off errors in matrix processes, The Quarterly Journal of Mechanics and Applied Mathematics, 1 (1948), 287-308. Reprinted in Collected Works of A. M. Turing: Pure Mathematics, by J. L. Britton (Ed.), North-Holland, The Netherlands, 1992, with summary and notes (including corrections) 235
[128] H. Turnbull and A. Aitken, An Introduction to the Theory of Canonical Matrices, Blackie, London, Glasgow, 1932. 79
[129] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 12 (1992), 631-644. 174
[130] John Von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order, Bulletin of the American Mathematical Society, 53 (1947), 1021-1099. http://www.ams.org/journals/bull/1947-53-11/S0002-9904-1947-08909-6/S0002-9904-1947-08909-6.pdf 2
[131] A. J. Wathen, Preconditioning, Acta Numerica, (2015), 329-376. 235
[132] D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia, 2007. 120, 133
[133] D. S. Watkins and L. Elsner, Convergence of algorithms of decomposition type for the eigenvalue problem, Linear Algebra and its Applications, 143 (1991), 19-47. 120
[134] J. W. Watts III, A conjugate gradient truncated direct method for the iterative solution of the reservoir simulation pressure equation, Society of Petroleum Engineers Journal, 21 (1981), 345-353. 243
[135] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford University, Oxford, 1965. 79, 91, 114, 145
[136] V. Williams, Breaking the Coppersmith-Winograd barrier, 2011. http://theory.stanford.edu

edu/~virgi/matrixmult-f.pdf
[137] M. Van Barel, R. Vandebril and P. Van Dooren, Computing the eigenvalues of a companion matrix, 2008. http://bezout.dm.unipi.it/cortona08/slides/VanBarel.pdf 137, 138
[138] R. S. Varga, Factorizations and normalized iterative methods, in Boundary Problems in Differential Equations, edited by R.E. Langer, p. 121, Univ. Wisconsin Press, Madison, 1960. 243
[139] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962. 2nd edition, Springer-Verlag, Berlin, 2000. 173, 174, 184, 187
[140] D. M. Young, Iterative Methods for Solving Partial Difference Equations of Elliptic Type, PhD thesis, Harvard University, 1950. 178, 187
[141] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971. 173, 174, 187, 189
[142]北京大学数学系, 高等代数 (第三版), 高等教育出版社, 2003. 10
[143] 陈志明, 科学计算: 科技创新的第三种方法, 中国科学院院刊, 27 (2012), 161-166. 2
[144] 戴华, 矩阵论, 学出版社, 2001. 5, 182
[145] 胡家赣, 线性代数方程组的迭代解法, 科学出版社, 1991. 31
[146] 蒋尔雄, 矩阵计算, 科学出版社, 2008. 154
[147] 石钟慈, 第三种科学方法 — 计算机时代的科学计算, 清华大学出版社, 暨南大学出版社, 2000. 2, 4
[148] 孙继广, 矩阵扰动分析, 科学出版社, 北京, 2001. 65, 164
[149] 魏木生, 李莹, 赵建立, 广义最小二乘问题的理论与计算, 第二版, 科学出版社, 北京, 2020. 73, 103, 105
[150] 徐树方, 矩阵计算的理论与方法, 北京大学出版社, 北京, 1995. 19, 53, 174
[151] 徐树方, 控制论中的矩阵计算, 高等教育出版社, 北京, 2011. 76
[152] 徐树方, 钱江, 矩阵计算六讲, 高等教育出版社, 北京, 2011. 136, 138, 159, 160
[153] 詹兴致, 矩阵论, 高等教育出版社, 北京, 2008. 172
[154] 张恭庆, 林源渠, 泛函分析讲义, 上册, 北京大学出版社, 北京, 1987. 20
[155] 张凯院, 徐仲, 数值代数, 第二版, 科技出版社, 2006. 191