线性变换的矩阵表示式 线性变换是一个很抽象的概念,如何将它具体化呢? 我们发现,如果给定线性空间 V n V_n V n 的 一个基 α 1 , α 2 , ⋯ , α n \alpha_1, \alpha_2, \cdots, \alpha_n α 1 , α 2 , ⋯ , α n 则对 V n V_n V n 中任意向量 α 1 \boldsymbol{\alpha}_1 α 1 有
α = k 1 α 1 + k 2 α 2 + ⋯ + k n α n , \alpha=k_1 \alpha_1+k_2 \alpha_2+\cdots+k_n \alpha_n, α = k 1 α 1 + k 2 α 2 + ⋯ + k n α n , 由线性变换的性质得:
T ( α ) = k 1 T ( α 1 ) + k 2 T ( α 2 ) + ⋯ + k n T ( α n ) . T(\boldsymbol{\alpha})=k_1 T\left(\boldsymbol{\alpha}_1\right)+k_2 T\left(\boldsymbol{\alpha}_2\right)+\cdots+k_n T\left(\boldsymbol{\alpha}_n\right) . T ( α ) = k 1 T ( α 1 ) + k 2 T ( α 2 ) + ⋯ + k n T ( α n ) . 于是 α \boldsymbol{\alpha} α 在 T T T 下的像就由基的像 T ( α 1 ) , T ( α 2 ) , ⋯ , T ( α n ) T\left(\boldsymbol{\alpha}_1\right), T\left(\boldsymbol{\alpha}_2\right), \cdots, T\left(\boldsymbol{\alpha}_n\right) T ( α 1 ) , T ( α 2 ) , ⋯ , T ( α n ) 所唯一确定. 而 T ( α ) ∈ V ( i = 1 , 2 , ⋯ , n ) T(\boldsymbol{\alpha}) \in V(i=1,2, \cdots, n) T ( α ) ∈ V ( i = 1 , 2 , ⋯ , n ) , 所以 T ( α i ) ∈ V ( i = 1 , 2 , ⋯ , n ) T\left(\boldsymbol{\alpha}_i\right) \in V(i=1,2, \cdots, n) T ( α i ) ∈ V ( i = 1 , 2 , ⋯ , n ) 也可由基 α 1 , α 2 , ⋯ , α n \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n α 1 , α 2 , ⋯ , α n 来线性表示,即有
{ T ( α 1 ) = a 11 α 1 + a 21 α 2 + ⋯ + a n 1 α n , T ( α 2 ) = a 12 α 1 + a 22 α 2 + ⋯ + a n 2 α n , ⋯ ⋯ ⋯ ⋯ T ( α n ) = a 1 n α 1 + a 2 n α 2 + ⋯ + a n n α n . \left\{\begin{array}{l}
T\left(\boldsymbol{\alpha}_1\right)=a_{11} \boldsymbol{\alpha}_1+a_{21} \boldsymbol{\alpha}_2+\cdots+a_{n 1} \boldsymbol{\alpha}_n, \\
T\left(\boldsymbol{\alpha}_2\right)=a_{12} \boldsymbol{\alpha}_1+a_{22} \boldsymbol{\alpha}_2+\cdots+a_{n 2} \boldsymbol{\alpha}_n, \\
\cdots \quad \cdots \quad \cdots \quad \cdots \\
T\left(\boldsymbol{\alpha}_n\right)=a_{1 n} \boldsymbol{\alpha}_1+a_{2 n} \boldsymbol{\alpha}_2+\cdots+a_{n n} \boldsymbol{\alpha}_n .
\end{array}\right. ⎩ ⎨ ⎧ T ( α 1 ) = a 11 α 1 + a 21 α 2 + ⋯ + a n 1 α n , T ( α 2 ) = a 12 α 1 + a 22 α 2 + ⋯ + a n 2 α n , ⋯ ⋯ ⋯ ⋯ T ( α n ) = a 1 n α 1 + a 2 n α 2 + ⋯ + a nn α n . 由上式得: T ( α 1 , α 2 , ⋯ , α n ) = ( T ( α 1 ) , T ( α 2 ) , ⋯ , T ( α n ) ) = ( α 1 , α 2 , ⋯ , α n ) A T\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n\right)=\left(T\left(\boldsymbol{\alpha}_1\right), T\left(\boldsymbol{\alpha}_2\right), \cdots, T\left(\boldsymbol{\alpha}_n\right)\right)=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n\right) \boldsymbol{A} T ( α 1 , α 2 , ⋯ , α n ) = ( T ( α 1 ) , T ( α 2 ) , ⋯ , T ( α n ) ) = ( α 1 , α 2 , ⋯ , α n ) A 其中
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) \boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) A = a 11 a 21 ⋮ a n 1 a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋯ a 1 n a 2 n ⋮ a nn 矩阵 A A A 称为线性变换 T T T 在基 α 1 , α 2 , ⋯ , α n \alpha_1, \alpha_2, \cdots, \alpha_n α 1 , α 2 , ⋯ , α n 下的矩阵.
显然,矩阵 A \boldsymbol{A} A 由基的像 T ( α 1 ) , T ( α 2 ) , ⋯ , T ( α n ) T\left(\boldsymbol{\alpha}_1\right), T\left(\boldsymbol{\alpha}_2\right), \cdots, T\left(\boldsymbol{\alpha}_n\right) T ( α 1 ) , T ( α 2 ) , ⋯ , T ( α n ) 唯一确定.
反之,如果给定一个矩阵 A \boldsymbol{A} A 作为某个线性变换 T T T 在基 α 1 , α 2 , ⋯ , α n \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n α 1 , α 2 , ⋯ , α n 下的矩阵,也就是给出了
这个基在变换下的像,根据变换 T T T 保持线性关系的特性, 我们来推导变换 T T T 必须满足的关系式.
V n V_n V n 中的任意向量记为 α = ∑ i = 1 n x i α l \alpha=\sum_{i=1}^n x_i \alpha_l α = ∑ i = 1 n x i α l 有
T α = T ( ∑ i = 1 n x i α i ) = ∑ i = 1 n x i T ( α i ) = ( T ( α 1 ) , T ( α 2 ) , ⋯ , T ( α n ) ) ( x 1 x 2 ⋮ x n ) = ( α 1 , α 2 , ⋯ , α n ) A ( x 1 x 2 ⋮ x n ) , T \boldsymbol{\alpha}=T\left(\sum_{i=1}^n x_i \boldsymbol{\alpha}_i\right)=\sum_{i=1}^n x_i T\left(\boldsymbol{\alpha}_i\right)=\left(T\left(\boldsymbol{\alpha}_1\right), T\left(\boldsymbol{\alpha}_2\right), \cdots, T\left(\boldsymbol{\alpha}_n\right)\right)\left(\begin{array}{c}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{array}\right)=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n\right) \boldsymbol{A}\left(\begin{array}{c}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{array}\right) \text {, } T α = T ( i = 1 ∑ n x i α i ) = i = 1 ∑ n x i T ( α i ) = ( T ( α 1 ) , T ( α 2 ) , ⋯ , T ( α n ) ) x 1 x 2 ⋮ x n = ( α 1 , α 2 , ⋯ , α n ) A x 1 x 2 ⋮ x n , 即 T ( ( α 1 , α 2 , ⋯ , α n ) ( x 1 x 2 ⋮ x n ) ) = ( α 1 , α 2 , ⋯ , α n ) A ( x 1 x 2 ⋮ x n ) T\left(\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n\right)\left(\begin{array}{c}x_1 \\ x_2 \\ \vdots \\ x_n\end{array}\right)\right)=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n\right) \boldsymbol{A}\left(\begin{array}{c}x_1 \\ x_2 \\ \vdots \\ x_n\end{array}\right) T ( α 1 , α 2 , ⋯ , α n ) x 1 x 2 ⋮ x n = ( α 1 , α 2 , ⋯ , α n ) A x 1 x 2 ⋮ x n .
定理1 定理 1 设线性变换 T T T 在基 α 1 , α 2 , ⋯ , α n \alpha _1, \alpha _2, \cdots, \alpha _n α 1 , α 2 , ⋯ , α n 下的矩阵是 A A A ,向量 α \alpha α 与 T ( α ) T( \alpha ) T ( α ) 在基 α 1 , α 2 , ⋯ , α n \alpha _1, \alpha _2, \cdots, \alpha _n α 1 , α 2 , ⋯ , α n 下的坐标分别为 ( x 1 x 2 ⋮ x n ) \left(\begin{array}{c}x_1 \\ x_2 \\ \vdots \\ x_n\end{array}\right) x 1 x 2 ⋮ x n 和 ( y 1 y 2 ⋮ y n ) \left(\begin{array}{c}y_1 \\ y_2 \\ \vdots \\ y_n\end{array}\right) y 1 y 2 ⋮ y n ,
则有
( y 1 y 2 ⋮ y n ) = A ( x 1 x 2 ⋮ x n ) . \left(\begin{array}{c}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{array}\right)= A \left(\begin{array}{c}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{array}\right) . y 1 y 2 ⋮ y n = A x 1 x 2 ⋮ x n . 按坐标表示,有
T ( α ) = A α . T( \alpha )= A \alpha . T ( α ) = A α . 例在 P [ x ] 3 P[x]_3 P [ x ] 3 中取基 p 1 = 1 , p 2 = x , p 3 = x 2 , p 4 = x 3 p_1=1, p_2=x, p_3=x^2, p_4=x^3 p 1 = 1 , p 2 = x , p 3 = x 2 , p 4 = x 3 求微分运算 D D D 的矩阵.
解
{ D p 1 = 0 = 0 p 1 + 0 p 2 + 0 p 3 + 0 p 4 D p 2 = 1 = 1 p 1 + 0 p 2 + 0 p 3 + 0 p 4 D p 3 = 2 x = 0 p 1 + 2 p 2 + 0 p 3 + 0 p 4 D p 4 = 3 x 2 = 0 p 1 + 0 p 2 + 3 p 3 + 0 p 4 \left\{\begin{array}{l}
D p_1=0=0 p_1+0 p_2+0 p_3+0 p_4 \\
D p_2=1=1 p_1+0 p_2+0 p_3+0 p_4 \\
D p_3=2 x=0 p_1+2 p_2+0 p_3+0 p_4 \\
D p_4=3 x^2=0 p_1+0 p_2+3 p_3+0 p_4
\end{array}\right. ⎩ ⎨ ⎧ D p 1 = 0 = 0 p 1 + 0 p 2 + 0 p 3 + 0 p 4 D p 2 = 1 = 1 p 1 + 0 p 2 + 0 p 3 + 0 p 4 D p 3 = 2 x = 0 p 1 + 2 p 2 + 0 p 3 + 0 p 4 D p 4 = 3 x 2 = 0 p 1 + 0 p 2 + 3 p 3 + 0 p 4 所以 D D D 在这组基下的矩阵为
A = ( 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 ) A =\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) A = 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 例设 R 3 R^3 R 3 上线性变换 T T T 定义为 T ( x 1 x 2 x 3 ) = ( 2 x 1 − x 2 x 2 + x 3 2 x 1 ) T\left(\begin{array}{l}x_1 \\ x_2 \\ x_3\end{array}\right)=\left(\begin{array}{c}2 x_1-x_2 \\ x_2+x_3 \\ 2 x_1\end{array}\right) T x 1 x 2 x 3 = 2 x 1 − x 2 x 2 + x 3 2 x 1 , 分别求 T T T 在基
e 1 = ( 1 0 0 ) , e 2 = ( 0 1 0 ) , e 3 = ( 0 0 1 ) 与基 α 1 = ( 1 0 0 ) , α 2 = ( 1 1 0 ) , α 3 = ( 1 1 1 ) 下的矩阵. \boldsymbol{e}_1=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \boldsymbol{e}_2=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \boldsymbol{e}_3=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \text { 与基 } \boldsymbol{\alpha}_1=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \boldsymbol{\alpha}_2=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \boldsymbol{\alpha}_3=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { 下的矩阵. } e 1 = 1 0 0 , e 2 = 0 1 0 , e 3 = 0 0 1 与基 α 1 = 1 0 0 , α 2 = 1 1 0 , α 3 = 1 1 1 下的矩阵 . T ( 1 0 0 ) = ( 2 0 2 ) = 2 α 1 − 2 α 2 + 2 α 3 = ( α 1 , α 2 , α 3 ) ( 2 − 2 2 ) , T ( 1 1 0 ) = ( 1 1 2 ) = 0 α 1 − α 2 + 2 α 3 = ( α 1 , α 2 , α 3 ) ( 0 − 1 2 ) , T ( 1 1 1 ) = ( 1 2 2 ) = − α 1 + 0 α 2 + 2 α 3 = ( α 1 , α 2 , α 3 ) ( − 1 0 2 ) , \begin{aligned}
& T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)=2 \boldsymbol{\alpha}_1-2 \boldsymbol{\alpha}_2+2 \boldsymbol{\alpha}_3=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right)\left(\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right), \\
& T\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)=0 \boldsymbol{\alpha}_1-\boldsymbol{\alpha}_2+2 \boldsymbol{\alpha}_3=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right)\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right), \\
& T\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)=-\boldsymbol{\alpha}_1+0 \boldsymbol{\alpha}_2+2 \boldsymbol{\alpha}_3=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right)\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right),
\end{aligned} T 1 0 0 = 2 0 2 = 2 α 1 − 2 α 2 + 2 α 3 = ( α 1 , α 2 , α 3 ) 2 − 2 2 , T 1 1 0 = 1 1 2 = 0 α 1 − α 2 + 2 α 3 = ( α 1 , α 2 , α 3 ) 0 − 1 2 , T 1 1 1 = 1 2 2 = − α 1 + 0 α 2 + 2 α 3 = ( α 1 , α 2 , α 3 ) − 1 0 2 , 可得 T ( α 1 , α 2 , α 3 ) = ( α 1 , α 2 , α 3 ) ( 2 0 − 1 − 2 − 1 0 2 2 2 ) , \text { 可得 } T\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right)=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right)\left(\begin{array}{ccc}
2 & 0 & -1 \\
-2 & -1 & 0 \\
2 & 2 & 2
\end{array}\right) \text {, } 可得 T ( α 1 , α 2 , α 3 ) = ( α 1 , α 2 , α 3 ) 2 − 2 2 0 − 1 2 − 1 0 2 , T T T 在基 α 1 , α 2 , α 3 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 α 1 , α 2 , α 3 下的矩阵为
B = ( 2 0 − 1 − 2 − 1 0 2 2 2 ) . \boldsymbol{B}=\left(\begin{array}{ccc}
2 & 0 & -1 \\
-2 & -1 & 0 \\
2 & 2 & 2
\end{array}\right) . B = 2 − 2 2 0 − 1 2 − 1 0 2 . 可见,同一个线性变换在不同的基下有不同的矩阵.
例 已知线性空间 R 3 \mathbb{R}^3 R 3 的线性变换 σ \sigma σ 把基
ε 1 = ( 1 , 0 , 1 ) T , ε 2 = ( 0 , 1 , 0 ) T , ε 3 = ( 0 , 0 , 1 ) T \boldsymbol{\varepsilon}_1=(1,0,1)^{\mathrm{T}}, \boldsymbol{\varepsilon}_2=(0,1,0)^{\mathrm{T}}, \boldsymbol{\varepsilon}_3=(0,0,1)^{\mathrm{T}} ε 1 = ( 1 , 0 , 1 ) T , ε 2 = ( 0 , 1 , 0 ) T , ε 3 = ( 0 , 0 , 1 ) T 变为
η 1 = ( 1 , 0 , 2 ) T , η 2 = ( − 1 , 2 , − 1 ) T , η 3 = ( 1 , 0 , 0 ) T , \boldsymbol{\eta}_1=(1,0,2)^{\mathrm{T}}, \boldsymbol{\eta}_2=(-1,2,-1)^{\mathrm{T}}, \boldsymbol{\eta}_3=(1,0,0)^{\mathrm{T}} \text {, } η 1 = ( 1 , 0 , 2 ) T , η 2 = ( − 1 , 2 , − 1 ) T , η 3 = ( 1 , 0 , 0 ) T , 试求 σ \sigma σ 在基 ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε 1 , ε 2 , ε 3 下的矩阵。
解法一:可用观察法将基的像分别表示为基的线性组合。由于 R 3 \mathbb{R}^3 R 3 中基 ε 1 , ε 2 , ε 3 \boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3 ε 1 , ε 2 , ε 3 在线性变换 σ \sigma σ 下的像分别为
σ ( ε 1 ) = ( 1 , 0 , 2 ) T = ε 1 + ε 3 , σ ( ε 2 ) = ( − 1 , 2 , − 1 ) T = − ε 1 + 2 ε 2 , σ ( ε 3 ) = ( 1 , 0 , 0 ) T = ε 1 − ε 3 , \begin{aligned}
& \sigma\left(\varepsilon_1\right)=(1,0,2)^{\mathrm{T}}=\varepsilon_1+\varepsilon_3, \\
& \sigma\left(\varepsilon_2\right)=(-1,2,-1)^{\mathrm{T}}=-\varepsilon_1+2 \varepsilon_2, \\
& \sigma\left(\varepsilon_3\right)=(1,0,0)^{\mathrm{T}}=\varepsilon_1-\varepsilon_3,
\end{aligned} σ ( ε 1 ) = ( 1 , 0 , 2 ) T = ε 1 + ε 3 , σ ( ε 2 ) = ( − 1 , 2 , − 1 ) T = − ε 1 + 2 ε 2 , σ ( ε 3 ) = ( 1 , 0 , 0 ) T = ε 1 − ε 3 , 即
σ ( ε 1 , ε 2 , ε 3 ) = ( ε 1 , ε 2 , ε 3 ) ( 1 − 1 1 0 2 0 1 0 − 1 ) \sigma\left(\varepsilon_1, \varepsilon_2, \varepsilon_3\right)=\left(\varepsilon_1, \varepsilon_2, \varepsilon_3\right)\left(\begin{array}{rrr}
1 & -1 & 1 \\
0 & 2 & 0 \\
1 & 0 & -1
\end{array}\right) σ ( ε 1 , ε 2 , ε 3 ) = ( ε 1 , ε 2 , ε 3 ) 1 0 1 − 1 2 0 1 0 − 1 故 σ \sigma σ 在基 ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε 1 , ε 2 , ε 3 下的矩阵为
A = ( 1 − 1 1 0 2 0 1 0 − 1 ) A=\left(\begin{array}{rrr}
1 & -1 & 1 \\
0 & 2 & 0 \\
1 & 0 & -1
\end{array}\right) A = 1 0 1 − 1 2 0 1 0 − 1 解法二:若不易看出基的像表示为基的线性组合的系数时,常常用解方程组的方法求出。为此设基 ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε 1 , ε 2 , ε 3 在线性变换 σ \sigma σ 下的像分别为
σ ( ε 1 ) = x 11 ε 1 + x 21 ε 2 + x 31 ε 3 , σ ( ε 2 ) = x 12 ε 1 + x 22 ε 2 + x 32 ε 3 , σ ( ε 3 ) = x 13 ε 1 + x 23 ε 2 + x 33 ε 3 , \begin{aligned}
& \sigma\left(\boldsymbol{\varepsilon}_1\right)=x_{11} \boldsymbol{\varepsilon}_1+x_{21} \boldsymbol{\varepsilon}_2+x_{31} \boldsymbol{\varepsilon}_3, \\
& \sigma\left(\boldsymbol{\varepsilon}_2\right)=x_{12} \boldsymbol{\varepsilon}_1+x_{22} \boldsymbol{\varepsilon}_2+x_{32} \boldsymbol{\varepsilon}_3, \\
& \sigma\left(\boldsymbol{\varepsilon}_3\right)=x_{13} \boldsymbol{\varepsilon}_1+x_{23} \boldsymbol{\varepsilon}_2+x_{33} \boldsymbol{\varepsilon}_3,
\end{aligned} σ ( ε 1 ) = x 11 ε 1 + x 21 ε 2 + x 31 ε 3 , σ ( ε 2 ) = x 12 ε 1 + x 22 ε 2 + x 32 ε 3 , σ ( ε 3 ) = x 13 ε 1 + x 23 ε 2 + x 33 ε 3 , 将 ε i , η j \boldsymbol{\varepsilon}_i, \boldsymbol{\eta}_j ε i , η j 的分量代人上式,解之得
x 11 = x 13 = x 31 = 1 , x 12 = x 33 = − 1 , x 21 = x 23 = x 32 = 0 , x 22 = 2. x_{11}=x_{13}=x_{31}=1, x_{12}=x_{33}=-1, x_{21}=x_{23}=x_{32}=0, x_{22}=2 . x 11 = x 13 = x 31 = 1 , x 12 = x 33 = − 1 , x 21 = x 23 = x 32 = 0 , x 22 = 2. 即
σ ( ε 1 ) = ( 1 , 0 , 2 ) T = ε 1 + ε 3 , σ ( ε 2 ) = ( − 1 , 2 , − 1 ) T = − ε 1 + 2 ε 2 , σ ( ε 3 ) = ( 1 , 0 , 0 ) T = ε 1 − ε 3 , \begin{aligned}
& \sigma\left(\varepsilon_1\right)=(1,0,2)^{\mathrm{T}}=\varepsilon_1+\varepsilon_3, \\
& \sigma\left(\varepsilon_2\right)=(-1,2,-1)^{\mathrm{T}}=-\varepsilon_1+2 \varepsilon_2, \\
& \sigma\left(\varepsilon_3\right)=(1,0,0)^{\mathrm{T}}=\varepsilon_1-\varepsilon_3,
\end{aligned} σ ( ε 1 ) = ( 1 , 0 , 2 ) T = ε 1 + ε 3 , σ ( ε 2 ) = ( − 1 , 2 , − 1 ) T = − ε 1 + 2 ε 2 , σ ( ε 3 ) = ( 1 , 0 , 0 ) T = ε 1 − ε 3 , 从而
( σ ( ε 1 ) , σ ( ε 2 ) , σ ( ε 3 ) ) = ( ε 1 , ε 2 , ε 3 ) ( 1 − 1 1 0 2 0 1 0 − 1 ) , \left(\sigma\left(\varepsilon_1\right), \sigma\left(\varepsilon_2\right), \sigma\left(\varepsilon_3\right)\right)=\left(\varepsilon_1, \varepsilon_2, \varepsilon_3\right)\left(\begin{array}{rrr}
1 & -1 & 1 \\
0 & 2 & 0 \\
1 & 0 & -1
\end{array}\right), ( σ ( ε 1 ) , σ ( ε 2 ) , σ ( ε 3 ) ) = ( ε 1 , ε 2 , ε 3 ) 1 0 1 − 1 2 0 1 0 − 1 , 故 σ \sigma σ 在基 ε 1 , ε 2 , ε 3 \varepsilon_1, \varepsilon_2, \varepsilon_3 ε 1 , ε 2 , ε 3 下的矩阵为
A = ( 1 − 1 1 0 2 0 1 0 − 1 ) A=\left(\begin{array}{rrr}
1 & -1 & 1 \\
0 & 2 & 0 \\
1 & 0 & -1
\end{array}\right) A = 1 0 1 − 1 2 0 1 0 − 1 例 设 ( ε 1 , ε 2 ) \left(\varepsilon_1, \varepsilon_2\right) ( ε 1 , ε 2 ) 为平面上的一直角坐标系,线性变换 σ \sigma σ 是平面上的向量对第一和第三象限分角线的垂直投影,求线性变换 σ \sigma σ 在基 ε 1 , ε 2 \varepsilon_1, \varepsilon_2 ε 1 , ε 2 下的矩阵。
解:由线性变换 σ \sigma σ 的定义可知
σ ( ε 1 ) = σ ( ε 2 ) = 1 2 ε 1 + 1 2 ε 2 , \sigma\left(\varepsilon_1\right)=\sigma\left(\varepsilon_2\right)=\frac{1}{2} \varepsilon_1+\frac{1}{2} \varepsilon_2, σ ( ε 1 ) = σ ( ε 2 ) = 2 1 ε 1 + 2 1 ε 2 , 故线性变换 σ \sigma σ 在基 ε 1 , ε 2 \varepsilon_1, \varepsilon_2 ε 1 , ε 2 下的矩阵为
A = ( 1 2 1 2 1 2 1 2 ) A=\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) A = ( 2 1 2 1 2 1 2 1 ) 线性变换在不同基下矩阵间的关系 设线性空间 V n V_n V n 中取定两个基 α 1 , α 2 , ⋯ , α n \alpha _1, \alpha _2, \cdots, \alpha _n α 1 , α 2 , ⋯ , α n 与 β 1 , β 2 , ⋯ , β n \beta _1, \beta _2, \cdots, \beta _n β 1 , β 2 , ⋯ , β n ,由基 α 1 , α 2 , ⋯ , α n \alpha _1, \alpha _2, \cdots, \alpha _n α 1 , α 2 , ⋯ , α n 到基 β 1 , β 2 , ⋯ , β n \beta _1, \beta _2, \cdots, \beta _n β 1 , β 2 , ⋯ , β n 的过渡矩阵为 P , V n P , ~ V_n P , V n 中的线性变换 T T T 在这两个基下的矩阵依次为 A A A 和 B B B ,那么 B = P − 1 A P B = P ^{-1} A P B = P − 1 A P .
证明 按定理的假设,有
( β 1 , β 2 , ⋯ , β n ) = ( α 1 , α 2 , ⋯ , α n ) P , \left( \beta _1, \beta _2, \cdots, \beta _n\right)=\left( \alpha _1, \alpha _2, \cdots, \alpha _n\right) P , ( β 1 , β 2 , ⋯ , β n ) = ( α 1 , α 2 , ⋯ , α n ) P , P P P 可逆,及
T ( α 1 , α 2 , ⋯ , α n ) = ( α 1 , α 2 , ⋯ , α n ) A , T ( β 1 , β 2 , ⋯ , β n ) = ( β 1 , β 2 , ⋯ , β n ) B , T\left( \alpha _1, \alpha _2, \cdots, \alpha _n\right)=\left( \alpha _1, \alpha _2, \cdots, \alpha _n\right) A , T\left( \beta _1, \beta _2, \cdots, \beta _n\right)=\left( \beta _1, \beta _2, \cdots, \beta _n\right) B , T ( α 1 , α 2 , ⋯ , α n ) = ( α 1 , α 2 , ⋯ , α n ) A , T ( β 1 , β 2 , ⋯ , β n ) = ( β 1 , β 2 , ⋯ , β n ) B , 于是
( β 1 , β 2 , ⋯ , β n ) B = T ( β 1 , β 2 , ⋯ , β n ) = T [ ( α 1 , α 2 , ⋯ , α n ) P ] = [ T ( α 1 , α 2 , ⋯ , α n ) ] P = ( α 1 , α 2 , ⋯ , α n ) A P = ( β 1 , β 2 , ⋯ , β n ) P − 1 A P \left( \beta _1, \beta _2, \cdots, \beta _n\right) B =T\left( \beta _1, \beta _2, \cdots, \beta _n\right)=T\left[\left( \alpha _1, \alpha _2, \cdots, \alpha _n\right) P \right]=\left[T\left( \alpha _1, \alpha _2, \cdots, \alpha _n\right)\right] P =\left( \alpha _1, \alpha _2, \cdots, \alpha _n\right) A P =\left( \beta _1, \beta _2, \cdots, \beta _n\right) P ^{-1} A P ( β 1 , β 2 , ⋯ , β n ) B = T ( β 1 , β 2 , ⋯ , β n ) = T [ ( α 1 , α 2 , ⋯ , α n ) P ] = [ T ( α 1 , α 2 , ⋯ , α n ) ] P = ( α 1 , α 2 , ⋯ , α n ) A P = ( β 1 , β 2 , ⋯ , β n ) P − 1 A P 因为 β 1 , β 2 , ⋯ , β n \beta _1, \beta _2, \cdots, \beta _n β 1 , β 2 , ⋯ , β n 线性无关,所以 B = P − 1 A P B = P ^{-1} A P B = P − 1 A P .
这定理表明 B B B 与 A A A 相似,且两个基之间的过渡矩阵 P P P 就是相似变换矩阵 .
例设 R 3 R^3 R 3 上线性变换 T T T 在基 e 1 = ( 1 0 0 ) , e 2 = ( 0 1 0 ) , e 3 = ( 0 0 1 ) e_1=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), e_2=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), e_3=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) e 1 = 1 0 0 , e 2 = 0 1 0 , e 3 = 0 0 1 下的矩阵为 A = ( 1 2 2 2 1 2 2 2 1 ) A=\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right) A = 1 2 2 2 1 2 2 2 1 ,求 T T T 在基 α 1 = ( 1 1 0 ) , α 2 = ( 0 1 1 ) , α 3 = ( 1 0 − 2 ) \alpha _1=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \alpha _2=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), \alpha _3=\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right) α 1 = 1 1 0 , α 2 = 0 1 1 , α 3 = 1 0 − 2 下的矩阵.
解: 为了求出 T T T 在基 α 1 , α 2 , α 3 \alpha_1, \alpha_2, \alpha_3 α 1 , α 2 , α 3 下的矩阵,必须先求出从基 e 1 , e 2 , e 3 e_1, e_2, e_3 e 1 , e 2 , e 3 到基 α 1 , α 2 , α 3 \alpha_1, \alpha_2, \alpha_3 α 1 , α 2 , α 3 的过渡矩阵 P P P .
由 ( α 1 , α 2 , α 3 ) = ( e 1 , e 2 , e 3 ) P \left( \alpha _1, \alpha _2, \alpha _3\right)=\left( e _1, e _2, e _3\right) P ( α 1 , α 2 , α 3 ) = ( e 1 , e 2 , e 3 ) P 易知 P = ( 1 0 1 1 1 0 0 1 − 2 ) , P − 1 = ( 2 − 1 1 − 2 2 − 1 − 1 1 − 1 ) \quad P =\left(\begin{array}{ccc}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -2\end{array}\right), \quad P ^{-1}=\left(\begin{array}{ccc}2 & -1 & 1 \\ -2 & 2 & -1 \\ -1 & 1 & -1\end{array}\right) P = 1 1 0 0 1 1 1 0 − 2 , P − 1 = 2 − 2 − 1 − 1 2 1 1 − 1 − 1 .
T T T 在基 α 1 , α 2 , α 3 \alpha _1, \alpha _2, \alpha _3 α 1 , α 2 , α 3 下的矩阵为 B = P − 1 A P = ( 2 − 1 1 − 2 2 − 1 − 1 1 − 1 ) ( 1 2 2 2 1 2 2 2 1 ) ( 1 0 1 1 1 0 0 1 − 2 ) = ( 7 8 − 4 − 4 − 5 2 − 4 − 4 1 ) \quad B = P ^{-1} A P =\left(\begin{array}{ccc}2 & -1 & 1 \\ -2 & 2 & -1 \\ -1 & 1 & -1\end{array}\right)\left(\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -2\end{array}\right)=\left(\begin{array}{ccc}7 & 8 & -4 \\ -4 & -5 & 2 \\ -4 & -4 & 1\end{array}\right) B = P − 1 A P = 2 − 2 − 1 − 1 2 1 1 − 1 − 1 1 2 2 2 1 2 2 2 1 1 1 0 0 1 1 1 0 − 2 = 7 − 4 − 4 8 − 5 − 4 − 4 2 1 .
定义 线性变换的像空间 T ( V n ) T\left(V_n\right) T ( V n ) 的维数,称为线性变换 T T T 的秩.
显然,若 A \boldsymbol{A} A 是 T T T 的矩阵,则 T T T 的秩就是 R ( A ) R(\boldsymbol{A}) R ( A ) . 若 T T T 的秩为 r r r ,则 T T T 的核 S T S_T S T 的维 数为 n − r n-r n − r .